

ESTEEM3

Enabling Science Through European Electron Microscopy - ESTEEM: A European Success Story

FINAL EVENT May 31st 2023

ESTEEM3 has received funding from the European Union's **Horizon 2020** research and innovation programme under grant agreement No 823717.

09:00 - 09:25	Welcome introduction on ESTEEM3 main achievements, Prof. Peter A. van Aken (MPG), coordinator of ESTEEM3
09:25 - 10:55	ESTEEM3 - Joint Research Activities achievements, Research Work packages leaders and participants
10:55 - 11:10	Coffee break
11:10 - 11:30	ESTEEM3- Networking Activities achievements, Prof. Miran Ceh (JSI)
11:30 – 12:00	ESTEEM3 -Transnational Access achievements, Prof. Peter A. van Aken TNA discussion round table: TNA for industry in the context of EU grants chaired by Dr. John Walmsley (UCA) John Walmsley: He has a vast experience in the field of characterisation of (nano-) materials, particularly using electron microscopy. John is available for discussing external (both academic and non-academic) work and is actively engaged in collaborations with industrial partners. Dogan Ozkaya: External Advisory Board member of ESTEEM3, he has experience in electron microscopy, working in a Johnson Matthey ·company that makes commercial use of advanced TEM equipment and has insights through his interaction with ePSIC/Diamond in the UK.

ESTEEM3 has received funding from the European Union's **Horizon 2020** research and innovation programme under grant agreement No 823717.

Agenda

L							
12:00 - 13:30	Lunch break						
	TA users feedbacks and discussions – 4 TA user members.						
	13:30-13:50: PhD. Piotr Woźniak- HSMCO project from Institute of Low						
13:30 – 15:30	Nano-gold on hierarchically structured gadolinium-doped ceria as an active oxidation catalyst: synergistic effect of chemical composition and structural hierarchy						
	13:50-14:10: PhD. Elisa Zanchi- CeramECS project from Politecnico di Torino (Collaboration with AGH)						
	Advanced microscopy characterization of innovative ceramic coatings for hydrogen technologies						
	14:10-14:30: Dr. S.M. Collins -Lumi-Nano-LBP project from the University of Leeds (Collaboration with CNRS)						
	Hybrid composites for bright and stable light emission						
	14:30-14:50: Dr. Sophia HOUARI - FLUOTOOTH and MIHTOOTH project from Paris Cité University and INSERM (collaboration with MPG) Tooth enamel pathologies of environmental origin: from macro- to nano-scale						
	14:50-15:10: Coffee break						
	15:10-15:30: PhD., Leander Michels - ISGI project from Elkem Silicon Products						
	Electron microscopy characterization of graphite-microparticle interface.						
15:30 - 15:50	Routes of sustainability: eDREAM and ARIE, Prof. Rafal Dunin-Borkowski (Forschungszentrum Jülich)						
15:50 - 16:00	Conclusion – Prof. Peter A. van Aken						

31/05/2023

ESTEEM3 has received funding from the European Union's **Horizon 2020** research and innovation programme under grant agreement No 823717.

WELCOME INTRODUCTION ON ESTEEM3 MAIN ACHIEVEMENTS

THIS PROJECT HAS RECEIVED FUNDING FROM THE EUROPEAN UNION'S HORIZON 2020 RESEARCH AND INNOVATION PROGRAMME UNDER GRANT AGREEMENT NO **823717**

What is ESTEEM3 ?

ESTEEM3 is an integrated infrastructure network of European Electron Microscopy Facilities providing Transnational Access (TA) for the academic and industrial research community in materials, physical, chemical and life sciences to the most powerful electron microscopy instrumentation and techniques available at the nanoscale.

The general aims of the consortium are to:

- Establish a strategic leadership in electron microscopy to guide future developments and promote advanced electron microscopy to the wider research community
- **Provide transnational access** for the academic and industrial research community in physical sciences to some of the most powerful characterisation techniques available at the nanoscale
- Provide training in innovative methods in electron microscopy and a forum for discussing emerging cutting-edge electron microscopy techniques

• The Coordination Team:

Peter van Aken Coordinator

Miran ČehAngus KirklandDeputy coordinatorDeputy coordinator

MAX PLANCK INSTITUTE FOR SOLID STATE RESEARCH

Jožef
Stefan
Institute

Aude Garsès Project manager

- Tasks:
 - (i) Support the day-to-day project management
 - (ii) Monitor all NA, JRA, TA activities
 - (iii) Serve as a helpdesk for the project partners

The **consortium** includes a total of **20 project beneficiaries:**

Beneficiary	City and country				
1. Max Planck Institute MPG (Coordinator)	Stuttgart, Germany				
2. Research Institute Jülich JUELICH	Jülich, Germany				
3. French National Centre for Scientific Research CNRS	Paris, France				
4. University of Antwerp UANTWERP	Antwerp, Belgium				
5. University of Oxford UOXF	Oxford, United Kingdom				
6. University of Cambridge UCAM	Cambridge, United Kingdom				
7. Jozef Stefan Institute JSI	Ljubljana, Slovenia				
8. Graz University of Technology TUGraz	Graz, Austria				
9. University of Zaragoza UNIZAR	Zaragoza, Spain				
10. University of Cadiz UCA	Cadiz, Spain				

Who are ESTEEM3 partners ?

The **consortium** includes a total of **20 project beneficiaries:**

Beneficiary	City and country
11. University of Krakow AGH-UST	Krakow, Poland
12. Chalmers University of Technology CHALMERS	Gothenburg, Sweden
13. Norwegian University of Science and Technology NTNU	Trondheim, Norway
14. National Research Centre CAT	Rome, Italy
15. Attolight SA ATTO	Lausanne, Switzerland
16. Corrected Electron Optical Systems CEOS	Heidelberg, Germany
17. DENSsolutions BV DENS	Delft, Netherlands
18. NanoMEGAS SPRL NM	Brussels, Belgium
19. Quantium Detectors Limited QD	Harwell, United Kingdom
20. Euronovia	Paris, France

ESTEEM3 member laboratories and SMEs develop Joint Research Activities (JRA):

Development of advanced TEM techniques for the solution of key problems:

- Imaging, Diffraction and Metrology
- Spectroscopy
- In-situ TEM
- Electron microscopy for specific applications
 - Materials for ICT, energy, health and transport
- Automation and big data

Category	Target
Open software	15
Technical reports (JRA deliverables)	33

The links to the open software and technical reports can be downloaded from the ESTEEM3 website: https://www.esteem3.eu/

Networking Activities (NA): ESTEEM3 implements a wide variety of activities aiming at improving the dissemination of outputs:

- Open-Access publications in high-ranked journals
- Lectures at selected conferences
- Setting up of an educational hub
- Organisation of a series of schools, workshops and webinars offering training by specialists in advanced techniques
- Collaboration with other European projects and infrastructures
- Promotion on social media and ESTEEM3 website

https://www.esteem3.eu/

Category	Target
ESTEEM staff trained through staff exchange	50
Schools and workshops	11
Participants at schools/workshops	600
Other educational and training events including presentations to industrial users	25

• **TEESMAT** – The Open Innovation Test bed for **Electrochemical Energy Storage MATerials**

 \geq

 Provide Transnational Access (TA) for the academic and industrial research communities in material, physical, chemical and life sciences to the most powerful electron microscopy instrumentation and characterisation techniques available at the nanoscale and beyond

Who provides TA in Europe ?

ESTEEM3–TA laboratories

- 1. Gemini Trondheim
- 2. CMAL Gothenburg
- 3. WEMS Cambridge
- 4. OXTEM Oxford
- 5. EMAT Antwerp
- 6. ER-C Juelich
- 7. IC-EM Krakow
- 8. LPS Orsay
- 9. StEM Stuttgart
- 10. FELMI-ZFE Graz
- 11. JSI Ljubljana
- 12. CEMES Toulouse
- 13. LMA Zaragoza
- 14. Beyondnano Catania
- 15. A-DME Cadiz

31/05/2023

A wide range of TA users' countries

Approx. **500** accepted TA projects

Category	Target
Access days to TEM installations	2200
Prepared samples for TEM	780
Access days for data processing	2950
Number of European TA projects	450
Number of international TA projects	50

TA success stories: 2D Nanosheets

Max Planck Institute for Solid State Research

2D Nanosheets project of Prof. Runfeng Chen from the Nanjing University of Posts and Telecommunications, China.

TA to **Stuttgart Center for Electron Microscopy** (StEM) in Germany

Liquid-phase exfoliation of 2H-MoS₂ ultrathin nanosheets using liquid nitrogen, published in journal **ACS Sustainable Chemistry & Engineering**.

The *NanoSensor* project by Dr. David Maria Tobaldi from the **University of Aveiro**

universidade de aveiro theoria poiesis praxis

TA to Advanced Division of Electron Microscopy (DME-UCA) facility of the **University of Cadiz**

Project on understanding the performance of electro-chemical non-enzymatic glucose sensors by nanoscale analyses

Industry TA project: *ECO2D* by Patrice Le Cornec from **Solvay**, France

TA to **Beyondnano** in Catania, Italy

Project on systematic structural and chemical characterization at atomic resolution of highquality exfoliated 2D materials without any solvent residual using eco-friendly solvent PolarClean of Solvay

TA success stories: Superconducting Pb on semiconducting InAs nanowires

The *Superconducting Pb on semiconducting InAs nanowires* project by Dr. Thomas Kanne from the **University of Copenhagen**, Denmark

TA to **Chalmers University of Technology** in Gothenburg, Sweden

Project on epitaxial semiconductor/superconductor heterostructures with novel quantum states. Depending on interface integrity, these materials act as a hybrid exhibiting engineered physical properties.

ESTEEM3 JOINT RESEARCH ACTIVITIES ACHIEVEMENTS

THIS PROJECT HAS RECEIVED FUNDING FROM THE EUROPEAN UNION'S HORIZON 2020 RESEARCH AND INNOVATION PROGRAMME UNDER GRANT AGREEMENT NO **823717**

Workpackage 4 Imaging, Diffraction and Metrology

THIS PROJECT HAS RECEIVED FUNDING FROM THE EUROPEAN UNION'S HORIZON 2020 RESEARCH AND INNOVATION PROGRAMME UNDER GRANT AGREEMENT NO **823717**

Overall Summary WP4

Imaging Diffraction and Metrology

- Improving reproducibility of TEM experiments by novel calibration procedures
- Exploring electron beam shaping for improved measurement precision
- Quantifying measurement precision from counting statistics and the optical state of the EM to guide experiments
- Controlling the electron dose

Deliverables

- D4.1: Report on comparison of approaches to electron ptychography (M16 OXF)
- D4.2: Report on diffraction methods (M34 CAM)
- D4.3: Report on comparison of precision versus dose for imaging and diffraction methods (M46 OXF)
- D4.4: Report on improved calibration routines (M24 ANT)
- D4.5: Report on evaluation of beam shaping for improved depth of field (M34 ANT)
- D4.6: Report on evaluation of precision estimates for TEM experiments (M46 TOU)

- Unlimited speed 4D STEM with event based recording: get ALL scattering data at normal imaging scan speeds -> needs to move to commercial phase
- Adaptive optics successfully demonstrated -> spinoff AdaptEM realized
- Real time ptychography and ICOM imaging demonstrated: high contrast at ultra low dose imaging. Transparent for user. -> open source, commercial implementation possible.
- Neural networks for denoising and preprocessing of Ptychographic data
- Ptychographic reconstructions of biological Cryo EM samples

- Automated orientation mapping (Pyxem)
- Automated STEM diffraction recording (SED)
- Applications of SED
 - Applications to soft materials, strain mapping, diffraction tomography.
 - Sensitive materials, e.g. Nanoscale phase mapping in Halide Perovskites
- Theoretical Framework for comparing 4D STEM transfer functions
- Alternative scan strategies lower beam damage at same dose
- Combining reconstructed phase with ADF atom counting for local chemical variations in oxide nanoparticles

Adaptive optics with electrons

phase plate brings zoo of exotic electron wave functions

Quantum Wavefront Shaping with a 48-element Programmable Phase Plate for Electrons Chu-Ping Yu, Francisco Vega Ib´a´nez, Armand B´ech´e, Jo Verbeeck PRX 2023

FFT

PP Vortex

NanoMEGAS

Fast indexing diffraction pattern

fast data-aquisition also calls for fast and robust data interpretation noone can filter through TBs of data by hand anymore

Niels Cautaerts, Phillip Crout, Håkon W. Ånes, Eric Prestat, Jiwon Jeong, Gerhard Dehm, Christian H. Liebscher, Free, flexible and fast: Orientation mapping using the multi-core and GPU-accelerated template matching capabilities in the Python-based open source 4D-STEM analysis toolbox Pyxem, Ultramicroscopy, Volume 237, 2022

31st May 2023

31st May 2023

- made more of every electron
- opens areas that were previously difficult:
 - beam sensitive samples
 - heterogeneous samples
 - faster results
 - reproducability revolution through automation
- method development with real potential for mature product to serve 'customers' in Europe and beyond

New spectroscopies

THIS PROJECT HAS RECEIVED FUNDING FROM THE EUROPEAN UNION'S HORIZON 2020 RESEARCH AND INNOVATION PROGRAMME UNDER GRANT AGREEMENT NO 823717

Key information

Work package number	5				Lead beneficiary					ORS, ANT			
Work package title	Spectroscopy												
Participants number	N°	1	2	За	3b	4	6	8	9	11	12	14	15
Short name of participants		STU	JUL	TOU	ORS	ANT	CAM	GRA	ZAR	UCA	CHA	CAT	ATTO
Person/months per participant:	РM	6	*	*	36	9	*	12	2	12	*	*	2
Start month	1				End month					48			

- **Task 5.1**: 3D Dynamical and Phase sensitive Nanometer Measurement of Optical Properties (ORS, ATTO, STU, GRA, ANT, TOU, CHA)
- Task 5.2: Phonon and Vibrational Spectroscopies (ORS, CHA, GRA, CAT, CAM)
- **Task 5.3**: Increasing Accuracy and Reproducibility Through Correlation and Coincidence Experiments (GRA, CAD, ORS, ATTO, ANT, STU, ZAR, JUL)

Deliverables

D5.1: Report on ps-resolved STEM-CL experiments (M30 – ORS)

- D5.2: Report on plasmon and phonon tomography (M40 ORS)
- D5.3: Report on quantitative chemical atomic resolution mapping (M52 GRA) writing
- D5.4: Report on correlation spectral imaging (M52 ORS)

Y. Auad et al., μeV electron spectromicroscopy using free-space light Nature Communications in press (2023)

Extreme spectral resolution

ESTEEM3 – Final event – Paris, FR

S. Meuret et al., Photon induced near-field electron microscopy from nanostructured metallic films and membranes arXiv:2303.11195 (2023)

31st May 2023

Interferences effects

ESTEEM3 – Final event – Paris, FR

Meuret, S. et al. *Time-resolved cathodoluminescence in an ultrafast transmission electron microscope*. **Appl. Phys. Lett**. 119, (2021).

First TR-STEM-CL

5.1 Phase shaping

Using a 6x6 programmable phase plate reveals 'phase' of plasmons (ANT)

https://adaptem.eu Control and understanding of phase shaping

200 300 400

Lourenço-Martins, M. et al. *Optical polarization analogue in free electron beams*. **Nat. Phys.** 17, 598–603 (2021).

400

5.2 Phonons

Li, X. et al. *Three-dimensional vectorial imaging of surface phonon polaritons*. **Science** (80), 371, 1364–1367 (2021).

3D & vectorial mapping of SPP

31st May 2023

5.3 Quantitative EDX

Z-factors for K and L lines at 200 and 80 kV for four-quadrant detector

- Commercial oxides have been used as standards (MgO, TiO₂, SiO₂, Al₂O₃ and ZrO₂)
- Solid angle and efficency of the EDX detector have been considered.
- Z-factors for each segment have been also estimated.

Precise and accurate elemental quantification using 4 quadrant X-EDS detector

Thickness measurement of a pure Al lamella by using z-factors

The thickness estimated (solid black line) is in a good agreement with that estimated by analysing the imaged acquiered on the FIB (dash red lines) profile view.

Miguel López-Haro et al.,

Quantitative, Spectro-kinetic Analysis of Oxygen in Electron-Beam Sensitive, Multimetallic Oxide Nanostructures, **Microscopy and Microanalysis**, ozad037 (2023)

31st May 2023

ESTEEM3 – Final event – Paris, FR

5.3 Quantitative EDX

Super-X 4 detector configuration with dedicated holder (tilt: α = 15°, β = 10°)

Basic GUI functions:

- 1. buttons to save/load configuration, add/remove items to configuration and start ray tracer
- 2. list of all items (parts of holder) and detectors
- 3. properties, selection of materials and geometry of selected item in (2)
- 4. preview of entire configuration in 3D

calculated EDX shadowing for each detector

Development of a raytracing software tool written in Python for quantitative EDX analysis. Using a sample holder with parts consisting of different materials in a certain configuration correction files can be generated, which adjust the X-ray intensities in order to yield correct quantitative results.

N. Grogger, J. Lammer, D. Knez, G. Haberfehlner, W. Grogger; paper in preparation

31st May 2023

ESTEEM3 – Final event – Paris, FR

5.3 Coincident experiments (EELS/EDX)

Jannis et al., *Coincidence Detection of EELS and EDX Spectral Events in the Electron Microscope* **Appl. Sci.** 11(19), 9058 2021

Removal of background and better access trace elements

Access to the excitation fate from absorption to emission

Varkentina, N., Auad, Y. et al. *Cathodoluminescence excitation spectroscopy: Nanoscale imaging of excitation pathways.* **Sci. Adv.** 8, (2022).

Workpackage 6 in situ TEM

THIS PROJECT HAS RECEIVED FUNDING FROM THE EUROPEAN UNION'S HORIZON 2020 RESEARCH AND INNOVATION PROGRAMME UNDER GRANT AGREEMENT NO 823717

31st May 2023

ESTEEM3 – Final event – Paris, FR

47

Objectives

→ Developing consistent advanced in-situ experiments to obtain precise and quantitative information on the modification of (nano)materials under various types of external stimuli (strain, electrical, magnetic, optical) and/or in different environments.

Tasks and deliverables

- Task 6.1: Sample preparation and in-situ TEM methodologies DENS, ZAR, LJU, CAT, TOU, ORS, UA
 - 6.1.1: Robust protocol to extract the TEM lamellae from a chip, welded to the stimuli platform, thinned down to electron transparency
 - 6.1.2: Explore the development of MEMS technologies to perform *in-situ* biasing, straining or/cooling, heating TEM experiments
 - *6.1.3:* Procedures for preparing and transferring TEM samples in neutral atmosphere to perform in-situ experiment under gas environment
 - ✓ D6.1 Report on protocol for advanced sample preparation of devices for in-situ experiment
- Task 6.2: In-situ experiments in spectroscopy modes ZAR, ORS, TOU, GRA, UA
 - Coupling simultaneously *in-situ* experiments and spectroscopic measurements, or independently
 - ✓ D6.2 Report of protocol on *in-situ* EDS and EELS techniques

Tasks and deliverables

• Task 6.3: TEM in liquid and gas environment - LJU, DENS

- Developing operando experiments in the TEM with dedicated TEM holders that can maintain the liquid or gases in a closed environment allowing imaging, diffraction and spectroscopy of samples in given media without altering the vacuum of the microscope
 - ✓ D6.3 Report on the effect of radiolysis in liquid cell
- Task 6.4: In-situ biasing TOU, ZAR, DENS, CAT, UA
 - Developing *in situ* TEM experiments applying AC or DC current or voltage to analyze the failure mechanisms in various materials and nanodevices
 - ✓ D6.4 Report on protocol for achieving low resistive FE(I)BID Ohmic contacts

WP6 highlights ZAR

Task 6.1 - Sample preparation

Advanced sample preparation in cryogenic conditions for in-situ experiments.

→ Cryo-FIB preparation of metastable pervoskite oxides (SrFeO₃) for resistive switching experiments.

Task 6.2 - In-situ experiments in spectroscopy modes

- EEL spectroscopic analysis of in situ thermal reduction of Graphene Oxide.
 - M. Pelaez-Fernandez et al. Carbon 178, 477 (2021) •
 - S. Hettler et al. 2D Materials 8, 031001 (2021) ٠

5 nm

a) Cryo FIB lamella preparation

b) RT FIB lamella preparation

31st May 2023

ESTEEM3 - Final event - Paris, FR

51

TEM

WP6 highlights LJU

Task 6.3 - TEM in liquid environment

Step 1: Ex-situ electrochemical characterization using standard electrochemical cell

Step 2: Ex-situ electrochemical characterization using MEMS chips

Step 3: Ex-situ electrochemical characterization in in-situ holder

Step 4: In-situ electrochemical characterization in TEM

- Voltammogram for [HAuCl4] = 1 mM[NaCl] = 0.1M,- Scan Rate = 50 mV/s Flow Rate: 150 µL/h - Working Electrode : Glassy Carbon - Reference Electrode : Platinum

31st May 2023

ESTEEM3 – Final event – Paris, FR

WP6 highlights DENS

Task 6.3 - TEM in liquid environment

Precession electron diffraction in a gas Nano-Reactor

(collaboration between DENSsolutions & NanoMegas)

Material questions to answer: How the phase and strain of nuclear fuel material Zr evolve under pure oxygen and pure water vapor environment? What's the mechanism driving faster cracking under water vapor?

Closed cell environmental holders only have one tilt axis, with proper FIB sample preparation, PED can give more reliable orientation and strain analysis results.

ED comparison of precession off and on

No precession 1° precession Technical and material science manuscripts under preparation

Iron Oxide Reduction and Oxidation

(collaboration between DENSsolutions and IOP, CAS, China)

Reduction is critical preliminary step in catalyst activation. When people started to step from ETEM to closed cell in this direction, discrepancy in temperature values caused a lot questions in instrument leak tightness. IOP's material science motivations and DENS's instrument and workflow configuration / improvement motivation met to this collaboration.

A few technical conclusions:

- 1 bar is different from 1 mbar chemically
- In situ system maintenance and workflow are critical

As-synthesized ${\rm Fe_3O_4}$ particles and integrated in-situ SAED of ${\rm Fe_3O_4}$ nanoparticles under reducing environment

31st May 2023

ESTEEM3 – Final event – Paris, FR

WP6 highlights TOU

>

Task 6.1 - Sample preparation

FIB sample preparation protocols allow in-situ biasing experiments on devices and thin layers

From wafer to in-situ device by FIB

MIM nanocapacitors (STMicroelectronics)

Brodovoi et al. APL (2022) 10.1063/5.0092019, hal-03752638 Gatel et al. PRL (2022) <u>10.1103/PhysRevLett.129.137701, hal-03787333</u> Technical and material science manuscripts under preparation

ESTEEM3 - Final event - Paris, FR

WP6 highlights UA

Task 6.4 - In-situ biasing

- Orientation dependent biasing with pure electric field (sample contacted to 1 electrode) [No current flow or Joule Heating]
- Trigger insulator to metal phase transition with electric field, current and voltage control (reproduced bulk behavior on FIB lamella)
- Electrical switching of piezoelectric capacitor and measurement of fatigue behavior (up to 4E9 cycles) [bulk behavior reproduced with in-situ fatigue]...

WP6 highlights GRA

Task 6.1 - Combined Kleindiek devices for in situ preparation

- Combination of plug-in tools in FIB:
 - ROTIP-EM Rotational Tip
 - MGS2-EM Microgripper
- Free rotation of Microgripper for different procedures:
 - 1. Lamella liftout
 - 2. Conventional ("frontside") thinning (t/ λ map as insert)
 - 3. Backside thinning
 - 4. Sample deposition on chip
- Multiple benefits vs. conventional lamella preparation & transfer:
 - No metal deposits necessary for transfer and deposition
 - Free rotation of lamella for thinning options
 - > Only possibility for cryo conditions

stive the Graze Centre for F

tiron Microscopy (ZEE)

WP6 highlights STU

Task 6.1 - Preparation of High-Quality Samples

Novel FIB-based methodology development for the preparation of clean and artifact-free specimens on MEMS-based chips for in-situ electrical and electro-thermal experiments

Electric-field-activated metal/insulator transitions in Cr-V₂O₃ investigated by in situ electron spectromicroscopy techniques

in the framework of the ANR project IMPULSE

@ STEM group at the Laboratoire de Physique des Solides, Université Paris-Saclay (Orsay, France)

► a 2-year post-doctoral position

NION CHROMATEM and Henny Z in situ options

In situ 4D-STEM nano-and micro-diffraction

laura.bocher@universite-paris-saclay.fr

odile.stephan@universite-paris-saclay.fr

https://equipes2.lps.u-psud.fr/stem/category/jobs

THIS PROJECT HAS RECEIVED FUNDING FROM THE EUROPEAN UNION'S HORIZON 2020 RESEARCH AND INNOVATION PROGRAMME UNDER GRANT AGREEMENT NO **823717**

To **implement and develop different TEM characterization techniques** (from specimen preparation to diffraction and imaging, electron tomography, spectroscopy, holography and in-situ investigations, with adequate energy and spatial resolution) for the study of ICT materials.

To explore the properties and performance characteristics of novel materials and material combinations for ICT, to provide the understanding necessary to improve and develop materials to engineering readiness.

Task 7.1: Semiconducting and magnetic materials (GRA, ZAR, CHA, TOU, CAT)

Task 7.2: *Functional complex oxides, carbon and related nanostructures* (ZAR, STU, ORS, TOU)

Task 7.3: *Photonic materials* (GRA, ZAR, STU, ORS, CHA)

Task 7.4: Sample preparation (GRA, ZAR, STU, CHA, TOU, CAT)

7.1 Semiconducting and Magnetic Materials

7.2 Functional complex oxides, carbon and related nanostructures

Ferroelectrics

Polarization switching in MOTT transistor

Adv. Mater. Inter. 2020 7(14), 2000601 ORS

Flexoelectrics

Strain polarization coupling in STO

Nano Lett. 2020 20, 88 STU

Multiferroics

Tuning BFO functionality by doping

Nano Lett. 2020 20, 88 GRA

7.3 Photonic Materials

Band gap engineering

Transition metal dichalcogenide semiconductors for optoelectronics

Nanomaterials 2021 11, 3218 ZAR

Coherent electron driven photon sources

Ultrafast spectral interferometry

Nature Comm. 2019 10, 599 STU

3D Phonon visualization

Mapping surface phonon polariton optical responses

Science 2021 371, 1364 ORS/GRA

7.4 Sample Preparation

Ar⁺ ion milling

- 1 50 mm

SrTiO₃

Vacuum

EBID P

EBID

100 µm

Preparation for *in-situ* electrical measurements on nanowires

Protocol on ESTEEM Website

Preparation of quantum dots

Protocol on ESTEEM Website

Specimen transfer to MEMS devices for *in-situ*

Protocol on ESTEEM Website

Workpackage 8 Materials for Energy

THIS PROJECT HAS RECEIVED FUNDING FROM THE EUROPEAN UNION'S HORIZON 2020 RESEARCH AND INNOVATION PROGRAMME UNDER GRANT AGREEMENT NO **823717**

Task 8.1 Nanomaterials for Sustainable Development

Task 8.2: Dynamic Characterization of Energy Materials

Task 8.3: Characterization of Devices for Energy Applications

Task 8.4: Sample Preparation of Materials for Energy

Short name of participants		CNRS- TOU	CNRS-LPS	UCAM	JSI	UCA	AGH-UST	CAT
Person/months per participant:	PM	*	*	*	9	16	12	9

Advanced electron microscopy techniques have been applied to characterised several nanostructure

Photocatalytic behavior of ZnO:Ce nanostructures

Optically active defects in ZnO nanorods subjected to thermal annealing in different environments (O₂ and Ar)

Advanced electron microscopy techniques have been applied to characterised several nanostructure

Oxygen evolution on beam sensitive energy nanomaterials based on hollandite and ceria

Using an alternative approach to determine the z-factors (developed within WP5), the phase transformation from fluorite type CeO_2 to the cubic sesquioxide, Ce_2O_3 , phase has been tracked by exposing the sample to the electron beam. Development of 2D materials-based heterostructures for electrocatalysis

Graphitization of Ni-based metal organic

Synthesis of single-atom nickel catalysts (SAC) on twodimensional nitrogen-doped carbon nanosheets

Advanced electron microscopy techniques have been applied to characterised several nanostructure

TEM and DFT Study of Basal-plane Inversion Boundaries in SnO2-doped ZnO

High-resolution STEM images of the Sn-rich IB in [21-1-0] projection. (a) HAADF-STEM image displaying a higher contrast for atomic columns along the IB-plane. Cation positions facilitate a direct identification of IB translation. (b) ABF-STEM image showing the positions of O-columns (weak dark dots).

Catalysts: Ni/CeO2-x catalysts for methane dry reforming reaction

Bandgap energies for bare CeO²-R and Ni/CeO₂ catalysts containing 0.5–4 wt% Ni in air at 25 °C and 200 °C and 450 °C in 5% H_2/N_2 atmosphere. Inset shows the 2Ni catalyst at mentioned temperatures and atmospheres.

Sensors: Layered amorphous *a*-SnO₂ gas sensors obtained by controlled oxidation of 2D-SnSe₂

HRTEM images and related SAED patterns of the: (a) as exfoliated $SnSe_2$ flake; (b) 1 h; (c) 48 h; (d) 170 h annealed $SnSe_2$ flakes in air at 200 °C.

2D-layered amorphous *a*-SnO2 is utilized for the first time to detect NO₂, H₂ and NH₃ gases at 100 $^{\circ}$ C Amorphous *a*-SnO₂ thin-layers (10–40 nm thick) grown over 2D-SnSe

Sensors & Actuators: B. Chemical 350 (2022) 130890,

TA access LAMOS

In-situ LC TEM experiment

a IB

In-situ heating experiment of In⁺³-doped ZnO

a) In-situ excerpt from movie showing a sequence of formation of the IB in In+3 doped ZnO. (b) IB's in In+3 doped polycrystalline ZnO. (c) The structure of the IB.

SEM micrograph of three electrode chip system for LC TEM (d) Work electrode before, and (e) after applying potential of -0.9 mV for 100 s. The nucleation of NI nanoparticles can be observed.

31st May 2023

Anodic Memristors Grown on Hf–Nb Combinatorial Thin-Film Alloys

Development of novel materials with coexisting volatile threshold and non-volatile memristive switching is crucial for neuromorphic application

HR-TEM micrographs of Hf–Nb oxide layer. (**a**,**b**) Sample Hf-45 at.% Nb, (**c**,**d**) sample Hf- 50 at.% Nb. Crystalline HfO₂ was sporadically interrupted by amorphous Nb_2O_5 regions (outlined with a dashed orange line). The conductive filaments emerging from metal layers are marked by orange arrows

W/W2C composite for nuclear fusion reactor: The effect of helium (He)

a) HAADF-STEM overview micrograph, with marked GBs (yellow lines) and regions of BF-STEM insets (white squares): b) bubbles at the W-W GB; c) bubbles outside the main implantation zone are limited to GBs (yellow arrows); d) He bubbles in the W grain outside main implantation zone, near sample surface; e) large elongated bubbles on inclined W|W 2 C interface (arrows mark upper and bottom contact).

Oxidation behaviour and scale formation in modern nickel-based superalloy produced via powder metallurgy route

Lamellae of the near-surface area of ME16 superalloy oxidized for 1000 hours at 730 °C. a) TEM-BF image of the lamellae; b) STEM-HAADF image of the lamellae; c) Compositional STEM-EDXS elemental distribution map of Ni, Co, and Cr in the lamellae; d) Compositional STEM-EDXS elemental distribution map of O, Al, and Ti in the lamellae.

FIB-SEM tomographic reconstruction of oxides in the near-surface area of ME16 superalloy oxidized for 1000 hours at 730 °C.

HRSTEM-HAADF/EDXS analysis of rutile at the interface of Co- and Cr-rich parts of the oxide scale.

HAADF-HRSTEM

• Influence of the high-temperature oxidation on the microstructure of Sanicro 25 steel used in energy systems

High-resolution TEM analysis of strengthening precipitates and a layer of scale after oxidation for 25 kh in steam

STEM-EDX analysis of the surface and linear distribution of selected chemical elements

3D visualization of selected elements of the microstructure of the scale layer and the base material

31st May 2023

- ✓ TEM Sample Preparation using FIB, the FIB lift-out technique
- ✓ Correlative multiscale electron microscopy, 3D FIB-SEM tomography with detailed TEM investigation Targeted Sample Preparation Stage
- ✓ Aerosol jet printing of battery electrodes for in situ electrochemical TEM

Protocols for sample preparation techniques of materials for energy

Task 8.4: Sample Preparation of Materials for Energy

TEM Sample Preparation using FIB, the FIB lift-out technique

Stage 2: Pre-cutting of the lamellae

Stage 3: Welding the needle to the pre-cut lamella for pulling it out.

Stage 4: Pull out the preprepared lamella.

Pt layer.

Stage 5: Scheme of the front side of a standard TEM grid.

Stage 6: The stage of fixing the lamellae on the grid.

Stage 7: View of the mesh with the lamella attached.

with **Stage 8:** The stage of final thinning of the lamellae.

Stage 9: Finished thin lamella.

Protocols for sample preparation techniques of materials for energy

Correlative multiscale electron microscopy, 3D FIB-SEM tomography with detailed TEM investigation - Targeted Sample Preparation Stage

Tomographic series of SEM-BSE images from the area of the substrate material and the scale layer of the oxidized nickel superalloy sample.

3D imaging of the microstructure elements of the base material and the scale on the surface of the 718Plus nickel superalloy sample.

Lamella prepared following the steps of the FIB lift-out technique as the next stage after the tomographic acquisition of a series of images.

Aerosol jet printing of battery electrodes for in situ electrochemical TEM

Schematic of the aerosol jet printing approach for EC-TEM sample preparation. (a) Schematic of the print head, where material aerosol (yellow) and sheath gas (red) are fed into the nozzle

SEM micrographs of aerosol jet printed lines on the working electrode of a Protochips EC-TEM chip.

The combination of the versatility, flexibility, size selectivity, positioning accuracy and spatial resolution make aerosol jet printing a very promising candidate for in situ or *operando* TEM sample preparation.

Related Published papers;

1.-Gutiérrez-Tarriño S., Portorreal-Bottier A., Trasobares S., Calvente J.J., Calvino J.J., Olloqui-Sariego J.L., Oña-Burgos P. Applied Surface Science, 623, 157001, 2023.

2.-Mandeep S., Aviraj I., González Garnica A.I., Mariathomas P., Ramanathan R., Patrick T., Christofferson A., Spencer M., Low M., Ahmed T., Walia S., Trasobares S., Manzorro R., Calvino J.J., García-Fernández E., Orte A., Domínguez-Vera J.M., Bansal V. ACS Nano 17, 9, 8083–8097, 2023.

3.-Psaradaki I, Costantini E, Rogantini D, Mehdipour M, Corrales L., Zeegers S. T, de Groot F., den Herder J.W.A., Mutschke M., Trasobares S., de Vries C.P., Waters L.B.F.M. Astronomy & Astrophysics 670, A30, 2023.

4.-J. K. Morzy, W. M. Dose, P. E. Vullum, M. C. Lai, A. Mahadevegowda, M. F. L. De Volder, C. Ducati. Origins and importance of intragranular cracking in layered lithium transition metal oxide cathodes, submitted December (2022) 5.-J.K. Morzy, PhD thesis, University of Cambridge (2022)

6.- A. Šestan, L. Sreekala, S. Markelj, M. Kelemen, J. Zavašnik, C. H. Liebscher, G. Dehm, T. Hickel, M. Čeh, S. Novak, P.Jenuš, *Acta Materialia*, 226 (2022) 117608, https://doi.org/10.1016/j.actamat.2021.117608

7.-I. Zrinski, J. Zavašnik, J. Duchoslav, A.W. Hassel, A. I. Mardare, Nanomaterials 2022, 12, 3944, https://doi.org/10.3390/nano12223944

8.- J. Morzy, A. Sartor, W. M. Dose, C. Ou, S. Kar-Narayan, M. F. L. De Volder, and C. Ducati, Microdevices Adv. Mater. Interfaces (2022), 2200530 https://doi.org/10.1002/admi.202200530.

9.-P. Wozniak, M. A. Małecka, L. Chinchilla, S. Trasobares. Materials Research Bulletin 151 (2022) 111816. https://doi.org/10.1016/j.materresbull.2022.111816

10.-P. Wozniak, M. A. Małecka, P Kraszkiewicz, W. Miśta, O. Bezkrovnyi, L. Chinchilla, S. Trasobares. Catal.

Sci. Technol 12, (2022) 7082 https://doi.org//10.1039/d2cy01214f

Materials for Energy

Related Published papers;

11.- G. žerjav, M. Roškarič, J. Zavašnik, J. Kovač, A. Applied Surface Science, 2022, vol. 579, p. 152196-1-152196-13. 12.- V. Paolucci, J. De Santis, L. Lozzi, G. Giorgi, C. Cantalini, Sensors & Actuators: B. Chemical 350 (2022) 130890, https://doi.org/10.1016/j.snb.2021.130890 13.-G. Žerjav, M. Roškarič, J. Zavašnik, J. Kovač, A. Pintar. Applied Surface Science, 579 (2022) 152196, https://doi.org/10.1016/j.apsusc.2021.152196 14.- L. Cabrera-Correa, L. González-Rovira, J. López-Castro, M. Castillo-Rodríguez, F. J. Botana. Materials Characterization 196, (2023), 112549. https://doi.org/10.1016/j.matchar.2022.112549 15.- I. Zrinski, J. Zavašnik, J. Duchoslav, A.W. Hassel, A. I. Mardare, Nanomaterials 2022, 12, 3944, https://doi.org/10.3390/nano12223944 16.-K. Lorber, J. Zavašnik, J. Sancho-Parramon, M. Bubaš, M. Mazaj, P. Djinović. Applied catalysis. B, Environmental, 2022, vol. 301, p. 1-11. 17.- V. Paolucci, J. De Santis, L. Lozzi, G. Giorgi, C. Cantalini.Sensors & Actuators: B. Chemical, 2022, 350, 130890. 18.- A. Šestan, L. Sreekala, S. Markelj, M. Kelemen, J. Zavašnik, C. Liebscher, G. Dehm, T. Hickel, M. Čeh, S. Novak, P. Jenuš. Acta materialia, 2022, 15 19.-Zhang Y. et al. ACS Catalysis, 11 (2021) 12701-12711. 20.- Koblar M. Master Thesis, Joyef Stefan International Postgraduate School, July 2021. 21.-Kruk A., Gil A., Lech S., Cempura G., Agüero A., Czyrska-Filemonowicz A., Materials (Basel), 14 (2021) 6327. 22.- Lech S, Kruk A., Gil A., Cempura G., Agüero A., Czyrska-Filemonowicz A., Scr. Mater., 167 (2019) 16–20. 23.- Lech S., Polkowski W., Polkowska A., Cempura G., Kruk A. Scr. Mat., 194 (2021) 113657.

Related Published papers;

24.- Damaskinos C.M., Zavašnik J., Djinović P., Efstathiou A.M..Applied Catalysis B: Environmental, 296 (2021) 120321.

25.- Ribić V., Rečnik A., Dražić G., Podlogar M., Branković Z., Branković G., The periodical of the International Institute for the Science of Sintering, 53 (2021) 237.

26.- Tobaldi D. M. et al., Chemical Engineering Journal, 405 (2021) 126651.

27.-Tobaldi D. M. et al., Materials Today Energy, 19 (2021) 100607.

28.- Kruk A., Lech S., Gil A., Cempura G., Agüero A., Wusatowska-Sarnek A.M., Czyrska-Filemonowicz A. Corros. Sci., 169 (2020) 108634. 177.

29.- Manzorro, R., et al., ACS Catalysis, 2019. 9(6): p. 5157-5170

Deliverable

D8.1: First report on TEM methods applied to materials for energy (M16 – CAD)
D8.2: Second report on TEM methods applied to materials for energy (M30 – LJU)
D8.3: Third report on TEM methods applied to materials for energy (M42 – CAD)
D8.4: Report on protocols for sample preparation techniques of materials for energy (M46-CAT)

Workpackage 9 Materials for Health

THIS PROJECT HAS RECEIVED FUNDING FROM THE EUROPEAN UNION'S HORIZON 2020 RESEARCH AND INNOVATION PROGRAMME UNDER GRANT AGREEMENT NO **823717**

Work package number	9			Lead beneficiary				STU, OXF					
Work package title	Mat	erial	s for	Неа	lth								
Participants number	N°	1	3b	4	5	6	7	10					
Short name of participants		STU	ORS	ANT	OXF	CAM	LJU	CAD					
Person/months per participant:	PM	12	*	9	12	*	*	*					
Start month	1			End month				54					

Objectives

- Sample preparation protocols:
 - soft materials
 - organic/inorganic hybrid materials
 - soft-hard matter interfaces
- To implement 2D and 3D electron microscopy techniques for the structural and chemical characterisation of materials relevant to health care including pharmaceuticals, materials for environmental purification and biosensors
- To apply advanced spectroscopic methods to investigate nanoparticles and coatings for phototherapy

Task 9.1: Sample preparation of materials for health (STU, ORS, ANT, LJU, CAM)

Task 9.2: Structural and chemical characterisation of materials for health (CAM, STU, OXF, ANT, ORS, CAD, LJU)

Task 9.3: Characterisation of nanoparticles for life science applications (OXF, ORS, ANT, LJU)

- Improving and developing new routines for the sample preparation of hybrid organic/inorganic materials from site specific positions for investigations of dental tissues and dental pathologies
- Preparation of human and rodent dentine by Ultramicrotomy (UM)

• Preparation of human dental pathologies by FIB (+ Nanomill)

Task 9.1: Sample preparation

Developing new routines for the sample preparation of pharmaceuticals (preliminary data)

Task 9.1: Sample preparation

Developing new routines for the sample preparation of biodegradable biopolyesters

Task 9.2: Structural and chemical characterization

Structural and chemical and characterization of dental tissues

• UM

• UM + FIB (+NM)

DENTIN	UM	FIB
Mg (at%)	5.4 ± 0.3	4.8 ± 0.2
P (at%)	31.3 ± 1.6	37.1 ± 1.9
Ca (at%)	58.3 ± 2.9	58.1 ± 2.9

Srot, V. and van Aken, P.A. et al.: 2 manuscripts in preparation

Vittori, M., Srot, V., Korat, L., Rejec, M., Sedmak, P., Bussmann, B., Predel, F., van Aken, P.A. Strus, J., Minerals 11 (2021) 1373.

Task 9.2: Structural and chemical characterization

 One-Step Encapsulation of ortho-Disulfides in Functionalized Zinc MOF. Enabling Metal–Organic Frameworks in Agriculture

Is the molecule encapsulated within the MOF?

Crystals begin to lose crystallinity when the accumulated dose reaches 25 e- Å-2 and are completely damaged at a dose of 75 e- Å-2.

Beam sensitive materials MOFs

iDPC-STEM using 4Q Detectors @ FEI TITAN Cubed Themis Microscope

Task 9.2: Structural and chemical characterization

• One-Step Encapsulation of ortho-Disulfides in Functionalized Zinc MOF. Enabling Metal–Organic Frameworks in Agriculture

Mejias, F.J.R, Trasobares, S., Varela, R.M., Molinillo, J.M.G., Calvino, J.J., Macias, F.A., ACS Appl Mater Interfaces 13(7) (2021) 7997.

Task 9.3: Characterization of nanoparticles

- Alloying in AgAu nanoparticles; importance for sensing, (optical) hyperthermic cancer treatment
- 3D investigation using heating tomography

Skorikov A, Albrecht W, Bladt E, Xie X, van der Hoeven JES, van Blaaderen A, Van Aert S, Bals S, ACS Nano 13(11) (2019) 13421.

Task 9.3: Characterization of nanoparticles

- Thermal stability of Fe@Au nanostars; importance for (optical) hyperthermal cancer treatment
- 3D investigation using heating tomography

de la Encarnacion C, Lenzi E, Henriksen-Lacey M, Molina B, Jenkinson K, Herrero A, Colas L, Ramos-Cabrer P, Toro-Mendoza J, Orue I, Langer J, Bals S, Jimenez de Aberasturi D, Liz-Marzan LM, *The Journal of Physical Chemistry C* **126** (2022) 19519.

Task 9.3: Characterization of nanoparticles

 HRSTEM investigation of monocrystalline Cobalt Ferrite (CoFe₂O₄) nanoparticles; importance for magnetic hyperthermia cancer treatment

Chowdhury M, Rösch E, Arenas Esteban D, Janssen K-J, Wolgast F, Ludwig F, Schilling M, Bals S, Viereck T and Lak A, Nano Letters **23** (2023) 58.

Achievements	Description
Key findings	 Improved sample preparation of hybrid organic-inorganic materials, biocompatible composites and pharmaceuticals Development of analytical techniques used for investigations of sensitive biological and bioinspired materials Advanced use of electron tomography combined with analytical techniques and insitu heating
Deliverables	 ✓ D9.1: First report on TEM methods applied to materials for health (M16 – UOXF) ✓ D9.2: Second report on TEM methods applied to materials for health (M36 – STU) ✓ D9.3: Third report on TEM methods applied to materials for health (M48 – UANTWERP) ✓ D9.4: Report on protocols for sample preparation techniques of materials for health (M52 – STU)

Workpackage 10 Materials for Transport

THIS PROJECT HAS RECEIVED FUNDING FROM THE EUROPEAN UNION'S HORIZON 2020 RESEARCH AND INNOVATION PROGRAMME UNDER GRANT AGREEMENT NO **823717**

- **Task 10.1:** Sample preparation for materials for transport (**KRA**, **TRO**, TOU, LJU)
- Task 10.2: Materials for Aeronautics/Aerospace (KRA, TRO, TOU)
- **Task 10.3:** Materials for Automotive Body and Chassis Structure (**TRO**, **KRA**, TOU)

The aim of this task is the implementation of sample preparation methods for various "difficult" materials such as Ni-based superalloys, advanced high-strength steels (AHSS), Ti and Al alloys using different techniques for preparing thin artefact free TEM lamellae.

Correlative multiscale electron microscopy, 3D FIB-SEM tomography with detailed TEM investigation - targeted sample removal from analysed volume.

Sample prepared for TEM tomography from Allvac 718Plus nickel-based superalloy - Internal cooperation with TU Graz in the frame of ESTEEM3.

The aluminium lamellae preparation for in-situ heating in TEM. BF-TEM images and a SEM image (top right) of an aluminium lamella attached to a DENS chip for in-situ heating in TEM. Results from NTNU TRO.

> Finally, protocols for sample preparation are under preparation and will be prepared and published on-line on the ESTEEM3 website.

This task presents of the results of the application of analytical TEM, FIB-SEM tomography techniques, STEM-XEDS to 3D visualization and phases identification of structural elements in various engineering materials.

The application of 3D visualization and TEM (STEM-HAADF, SAED, STEM - EDX) techniques to characterize the morphology, spatial distribution and chemical composition of selected structural elements in the fusion zone of the EBW Inconel 718 / ALLVAC[®] 718PLUS welded joint.

FIB-SEM Tomography from base material IN718

31st May 2023

The phases stability presented in the fusion zone of the Inconel 718/ATI 718Plus during isothermal holding at a temperature of 649 °C

Qualitative STEM-EDX maps of the distribution of selected elements from the Laves phase area in the weld of the IN718/718Plus weld joint subjected to annealing after the welding process for 50 hours at a temperature of 649 °C.

HRSTEM analysis of the Laves phase from the weld area of the IN718/718Plus welded joint after annealing for 50 hours at a temperature of 649 °C. Decomposition of the Laves Phase in

the Fusion Zone can be written as Laves \rightarrow Laves + δ + α -Cr + MC(II) secondary.

 $3\overline{D}$ visualization of the tomographically reconstructed volume of 2.94 μ m³ of the IN718/718Plus weld area heat-treated for 50 h at 649 °C, containing the Laves phase precipitate and primary carbides of the welded joint. The voxel size: 1.5 x 1.5 x 3 nm

Adam Kruk, Grzegorz Cempura, Decomposition of the Laves Phase in the Fusion Zone of the Inconel 718/ATI 718Plus[®] Welded Joint During Isothermal Holding at the Temperature of 649 °C. Materials Characterization 2023, 196, 112560

31st May 2023

α-Cr

Laves

High-resolution analysis of the Laves phase decomposition

High-resolution analysis of the Laves phase from the weld area of the IN718/718Plus welded joint after annealing for 50 hours at a temperature of 649 °C. a) Laves phase particle on which high-resolution analysis was performed. b) Precipitate of the Laves phase with the area marked for further analysis. c) HRSTEM-HAADF image after digital filtering using FFT bandpass filtration. d) Image of the FFT transform with the marked reciprocal lattice vectors corresponding to the respective interplanar distance. e) Enlarged fragment of the image from c). f) Simulated HAADF image

High-resolution analysis of the δ phase plate fragment growing from the Laves phase and growing into the γ matrix in the fusion zone of the IN718/718Plus weld joint after annealing for 50 hours at 649 °C. a) HRSTEM-HAADF high-resolution image showing the δ / γ boundary. b) Precipitation of the Laves phase with the marked area containing the δ phase plate on which the imaging shown in Fig. 10a was performed. c) The result of geometric phase analysis calculating the dilatation between δ/γ phases in the HRSTEM image a) made in the Strain ++ software. d) The simulation of HAADF images were performed in the JEMS software for δ phase with ZA [4 0 3] and for γ phase with ZA [1 1 1], the results are presented on Fig.10d

31st May 2023

Phase separation mechanism and atomic mixing patterns in AgCu nanoparticles

High-resolution HAADF STEM images of phase-separated (a, b) and single-phase (c) Ag-Cu nanoparticles.

A gradual transition from Janus-like to homogeneous mixing pattern was observed in Ag-Cu nanoparticles (28 wt.%Cu) with decrease of their size.

Revealing surface segregation of Cu in Ag-rich alloy nanoparticles.

HAADF STEM image of the Ag-Cu binary nanoparticles at 300°C (a), corresponding EELS composite map of Ag and Cu (b), and Cu relative composition map (c).

Evaporation of Janus Ag-Cu nanoparticles. Kinetics and phase composition

HAADF STEM images of Ag-Cu nanoparticle annealed to 600° C (a) and 750° C (d) along with false-color thickness maps (b, e), and EDX composite maps (c, f).

Schematic view of cross sections A-A (a) and B-B (b) of Ag and Cu domains. (c and d) are derivatives of EELS SI data along the corresponding crosssections.

31st May 2023

Mixing of Immiscible Components by the Size Effect: A Case Study of Au–Ni Nanostructures

HAADF STEM image of the Au-Ni nanostructures with a size of 2 nm at room temperature and the corresponding EDX component distribution maps

HAADF-STEM image of the Au-Ni film with a thickness of 1.3 nm (overview (a) and HR view (b)) formed on a C substrate at RT. The inset in (a) shows SAED pattern.

Size evolution of the solid-state miscibility gap in Au-Ni phase diagram. ■ - 140 nm, ▲ - 12 nm,

• – 6 nm,

- ♦ 3 nm,
- - 2 nm

- The curves limiting the solidstate miscibility gap for nm-sized Au-Ni particles was experimentally constructed in the whole concentration range and at all temperatures.
- It was proved the existence of the critical size for the Au-Ni system below which the phase separation does not occur.

31st May 2023

- Round robin test (AGH-TRO) for determination of chemical composition of different phases present in investigated area of weld metal.
- Application of STEM EDX for detailed characterization of the chemical composition of structural elements in fusion zone EBW Inconel 718/ALLVAC[®] 718PLUS welded joint.

31st May 2023

Task 10.3: Materials for Automotive Body and Chassis Structure

Objective of the study

- Qualitative estimation of hardening and non-hardening precipitates in the alloys under different heat-treatment conditions by TEM
- Structural characterization of the precipitates by analyzing atomic resolution images
- Understanding the starting point of nucleation of the secondary precipitates
- Statistical quantification of the volume fraction of the secondary precipitates by analyzing FIB SEM tomography data using particle segmentation method

31st May 2023

WP10: Heterogeneous Precipitation on α-dispersoids in Al-Mg-Si-Cu alloy at different heat treatments (TRD, KRA)

Fig (a) shows longer precipitates in the air-cooled and artificially aged samples both in the matrix and dispersoids, (b) shows finer precipitates on the dispersoids and the matrix in water-quenched and artificially aged samples, (c) shows larger precipitate free zones in air-cooled sample and (d) shows almost no precipitate free zones, (e) shows overlay of atoms in a defective secondary Q' precipitate

- Comparison of secondary precipitation in the air-cooled and water-quenched samples has been done
- Elucidation of the crystal structure of the defected precipitates is being carried out

31st May 2023

Task 10.3: Materials for Automotive Body and Chassis Structure

Orientation mapping

Misorientations in precipitate free zones of a compressed Al-Mg-Si alloy

Christiansen et al. Mat. Char. 144 (2018) 522.

Sunde et al. Acta Mater. 166 (2019) 587-596.

WP10: Analysis of SPED data for phase mapping of precipitates in aluminium alloys (TRD, CAM)

- Scanning precession electron diffraction (SPED) was used to study embedded precipitates in an Al-Cu-Li alloy.
- Four different data analysis approaches for phase mapping were applied on the dataset, containing three different phases.
- These were non-negative matrix factorization (NMF), template matching, vector analysis and artificial neural networks (ANN).
- Resulting phase maps were compared with the ground truth image created from virtual images of the dataset to estimate the accuracy.
- The accuracy was satisfactory and comparable for all approaches.

a 400 nm d e 020Al 200Al 020Al 200Al

Thronsen, Bergh, Thorsen, Christiansen, Frafjord, Crout, van Helvoort, Midgley & Holmestad; to be submitted

ESTEEM3 – Final event – Paris, FR

110

Pyxem

HyperSpy multi-dimensional data analysis

Task 10.3: Materials for Automotive Body and Chassis Structure

Quantification of precipitates in the matrix and on the dispersoids by analysis of FIB SEM tomography data by particle segmentation analysis in air cooled sample, aged for 30 mins

Particle type	Count	Volume fraction [%]
Precipitates (red)	132	0.42
Dispersoids (blue)	278	1.00
Disc shaped	277	1.55

Particles have been classified in terms of the shape: Further refinement necessary to distinguish the precipitates growing on the dispersoids.

Main achievements

- Procedures for phase identification and microstructural characterization of innovative structural & functional materials for the aerospace and automotive industry.
- Procedures of specimen preparation appropriate for electron microscopy investigations from the above-mentioned materials. We suggest combining FIB-SEM tomographic acquisition of images, used for 3D imaging, with lamella cutting. Such a procedure results in a **Targeted Sample Preparation** (TSP).
- Microstructural characterization of joints in materials for automotive body and chassis structures.
- Implementation of **in-situ straining and heating** (WP6) combined with automated orientation mapping.
- High-resolution analysis of interphase boundary between strengthening particles and matrix in nickel-base superalloys.
- In-situ TEM investigation of strengthening particles stability at high-temperatures in nickel-based superalloys.
- High-resolution analysis of strengthening particles in aluminum alloys.

THIS PROJECT HAS RECEIVED FUNDING FROM THE EUROPEAN UNION'S HORIZON 2020 RESEARCH AND INNOVATION PROGRAMME UNDER GRANT AGREEMENT NO **823717**

Data and Automation

Within this WP we will develop strategies and capabilities for big data, open data, open science and automation of workflows in TEM for the benefit of the wider user community.

- 1. The development of optimised hardware and software for handling high data rates and volumes
- 2. The establishment of automated and smart workflows for optimised instrument control, data acquisition, data processing and machine learning with reduced human intervention
- 3. The development of software for the design and interpretation of experiments

- Real time ptychography and ICOM reconstruction: open source: https://github.com/ThFriedrich/riCOM_cpp
- CNN based distortion correction in images: open source: https://github.com/IvanIh20/r_em
- Advanced model based EELS library: pyEELSMODEL, open source release soon
- Advanced CPU/GPU multislice Multem: open source https://github.com/IvanIh20/multem
- Open source library of EELS/EDX cross sections: https://zenodo.org/record/6599071#.ZF4AoM5ByUk
- Python electrostatic simulation code

• OXF: Low-dose binary ptychography: https://doi.org/10.1063/1.5143213

a) Example CBED pattern sequence, (b) iCoM
reconstruction, and (c) SSB reconstruction for ZSM5 using a cumulative electron dose of 200 eA° 2.
The scale bar for the phase reconstructions is 2
nm.

TRO, CAM: HyperSpy-based packages

pyxem 0.15.1 documentation
Q Search
USER GUIDE
Importing MIB Datasets
Data Inspection- Preprocessin Unsupervised ML
Phase/Orientation Mapping
Calibrations
Introduction
Contents
Nanocrystal Segmentation
Azimuthal Integral
PDF Analysis Tutorial

Angular Correlations of Amorphous Materials

HELF

API reference

Analysing magnetic materials using STEM-DPC

diffsims

🕐 build passing coverage 100% docs passing pypi v0.5.2 code style black DOI 10.5281/zenodo.3337900

diffsims is an open-source Python library for simulating diffraction.

If simulations performed using diffsims form a part of published work please cite the DOI at the top of this page. You can find demos in the diffsims-demos repository. See the documentation for installation instructions, the API reference, the changelog and more.

diffsims is released under the GPL v3 license

Welcome to LumiSpy's documentation!

🖌 Azure Pipelines succeeded 💭 Tests passing 🖓 codecov 100% 💭 CodeQL passing python 3.7 | 3.8 | 3.9 | 3.10 pypi v0.2.2 Anaconda.org 0.2.2 License GPLv3 DOI 10.5281/zenodo.4640445 docs passing

LumiSpy is a Python package extending the functionality for multi-dimensional data analysis provided by the HyperSpy library. It is aimed at helping with the analysis of luminescence spectroscopy data (cathodoluminescence, photoluminescence, electroluminescence, Raman, SNOM).

Check out the Installation section for further information, including how to start using this project.

Complementing this documentation, the LumiSpy Demos repository contains curated Jupyter notebooks to provide tutorials and exemplary workflows.

orix User guide API reference Contributing Changelog

31st May 2023

ESTEEM3 – Final event – Paris, FR

0

PSI, Ptychography 4.0, JUL: Fast live ptychography

To [*], do one iteration - TButhen get inuthen() kennel do one iteration

CEOS, JUL: Fast interactive live processing with LiberTEM and PantaRhei

Online Thickness Determination with Position Averaged Convergent Beam Electron Diffraction using Convolutional Neural Networks (Graz, JUL)

Michael Oberaigner et al., <u>https://doi.org/10.1093/micmic/ozac050</u> <u>https://github.com/MichaelO1993/PACBED-</u> <u>CNN</u>

(a) PACBED CNN

Select a DM4 file with a PACBED pattern and specify the metadata. By cilcking "Submit", the file is uploaded and a pre-trained neuronal networks derives thickness and mistlit. Finally, the result and validation information are displayed.

Pre-trained models are available for Rutile and Strontium titanate along the <0 0 1> zone axis with and acceleration voltage of 80 kV and a convergence angle of 20 mrad for this demonstration.

DM4 file and metadata

Durchsuchen Keine Datei ausgewählt.	
cceleration voltage	
30000	*
one axis	
001	*
rystal structure	
Rutile	
onvergence angle	
20	*
DERIVE THICKNESS AND MISTILT	
esults	
submit the form above to display results.	

31st May 2023

TOU: Hologram stabilization

JUL: Data management

1: conventional acquisition

2: acquisition with drift correction

ORS: Real-time EELS drift correction

ORS: Electron energy gain spectroscopy controlled with Nion Swift, VG Lumière, 2021.

31st May 2023

ESTEEM3 – Final event – Paris, FR

121

COFFEE BREAK

THIS PROJECT HAS RECEIVED FUNDING FROM THE EUROPEAN UNION'S HORIZON 2020 RESEARCH AND INNOVATION PROGRAMME UNDER GRANT AGREEMENT NO **823717**

ESTEEM3 NETWORKING ACTIVITIES ACHIEVEMENTS: WP1,WP2,WP3

THIS PROJECT HAS RECEIVED FUNDING FROM THE EUROPEAN UNION'S HORIZON 2020 RESEARCH AND INNOVATION PROGRAMME UNDER GRANT AGREEMENT NO **823717**

NA Work Packages

WP No	Work Package Title	Lead Participant No	Lead Participant Short Name	Person- Months	Start Month	End month
1	Integration and Sustainability	1	STU	60	1	48
2	Education and Training	8	LJU	31	1	48
3	Outreach	1	STU	69	1	48
4	Imaging, Diffraction and Metrology	5	OXF	86	1	48
5	Spectroscopy	3	CNRS (ORS)	77	1	48
6	In-situ TEM	3	CNRS (TOU)	50	1	48
7	Materials for ICT	7	GRA	64	1	48
8	Materials for Energy	10	CAD	46	1	48
9	Materials for Health	1	STU	33	1	48
10	Materials for Transport	11	KRA	28	1	48
11	Data and Automation	2	JUL	44	1	48
12	Transnational-Access	1	STU	200	1	48
13	Management of the Project	1	STU	30	1	48
				818		

Networking activities KPIs

Activity	WP N°	Category	Target	Status – April. 2023
NA		ESTEEM3 staff trained through staff exchange	50	31
		Schools & workshops	11	14
	1-3 Particip Other ed presenta - School	Participants at schools/workshops	600	
		Other educational & training events including presentations to industrial users - Schools, webinars, seminars	25	83

WP1: Integration and Sustainability

Work package number	1	1 Lead beneficiary				OXF, STU	
Work package title	Integration	Integration and Sustainability					
Participant number	1	2	3а	3b	4	5	6
Short name of participant	STU	JUL	TOU	ORS	ANT	OXF	CAM
Person months per participant:	6	3	4	3	4	4	4
Participant number	7	8	9	10	11	12	13
Short name of participant	LJU	GRA	ZAR	CAD	KRA	СНА	TRO
Person months per participant:	2	1	2	2	1	2	2
Participant number	14	15	16	17	18	19	20
Short name of participant	САТ	ATTO	CEOS	DENS	NM	QD	EUR
Person months per participant:	2	2	2	2	2	2	8
Start month	1			End month	48		

Objectives

- 1. To increase the quality and integration of the TA service provided
- 2. Set the basis for a legal structure for a European Electron Microscopy Research Infrastructure
- 3. To define an innovation and impact strategy for advanced TEM

Task 1.1: Integration of access procedures and quality of service (led by STUinvolvement of all other partners)

Task 1.1a: Management of the Transnational Access Activity (led by **STU**, **EUR**) Task 1.1b: Staff development (led by **CHA** and **CAT** – participation of all other partners)

Task 1.2: Road mapping (OXF, ORS with participation of JUL, TOU, ZAR, TRO, ANT, LJU, STU)

Task 1.2a: Towards an ESTEEM legal structure Task 1.2b: Sustainability

Task 1.3: Foresight studies for TEM (JUL, ANT, TOU, CAM, ORS, OXF, ATT, CEOS, DENS, NM, QD, EUR)

Task 1.4: Improving access to the ESTEEM3 infrastructure through standardized data and software approaches in an open data and open science context (TOU, JUL, CAM)

Task 1.1: Integration of access procedures and quality of service (led by STU– involvement of all other partners)

Task 1.1a: Management of the Transnational Access Activity (led by STU, EUR)

• Coordination of TNA projects (TNA presentation)

Task 1.1b: Staff development (led by CHA and CAT – participation of all other partners)

The online training activities include 31 online training activities of which there are 4 training sessions and 27 webinars.

D1.1a Manual describing best practice for Transnational Access (STU) D1.1b Report on staff development (CHA)

31st May 2023

Task 1.2: Road mapping (OXF, ORS with participation of JUL, TOU, ZAR, TRO, ANT, LJU, STU)

Task 1.2a: Towards an ESTEEM legal structure

Well identified by other ARIE RIs, and by the EC (including ESFRI), e-DREAM aims to bring together all TEM infrastructures of the Member States in European initiatives aimed at promoting the creation in the near future of a European RI in Electron Microscopy.

Task 1.2b: Sustainability

• Presentation on sustainability pending

D1.2a: Report on a possible legal structure (TOU, 52) D1.2b: Report on the joint actions with national EM networks (ORS, 46) D1.2c: Report on possible business model for sustainable funding (ANT, 46)

Task 1.3: Foresight studies for TEM (JUL, ANT, TOU, CAM, ORS, OXF, ATT, CEOS, DENS, NM, QD, EUR)

Deliverables submitted

Task 1.4: Improving access to the ESTEEM3 infrastructure through standardized data and software approaches in an open data and open science context (TOU, JUL, CAM)

The positive developments for software and data in electron microscopy in an open science and open data context continue.

D1.3: Innovation strategy white paper (OXF, 52) D1.4b: Final report on a data and software strategy for TEM (JUL, 52)

NA Work Packages

WP No	Work Package Title	Lead Participant No	Lead Participant Short Name	Person- Months	Start Month	End month
1	Integration and Sustainability	1	STU	60	1	48
2	Education and Training	8	LJU	31	1	48
3	Outreach	1	STU	69	1	48
4	Imaging, Diffraction and Metrology	5	OXF	86	1	48
5	Spectroscopy	3	CNRS (ORS)	77	1	48
6	In-situ TEM	3	CNRS (TOU)	50	1	48
7	Materials for ICT	7	GRA	64	1	48
8	Materials for Energy	10	CAD	46	1	48
9	Materials for Health	1	STU	33	1	48
10	Materials for Transport	11	KRA	28	1	48
11	Data and Automation	2	JUL	44	1	48
12	Transnational-Access	1	STU	200	1	48
13	Management of the Project	1	STU	30	1	48
				818		

WP2: Education and Training

Work package number	2	2 Lead beneficiary					LJU, GRA	
Work package title	Educatio	Education and Training						
Participant number	1	2	3а	3b	4	5	6	
Short name of participant	STU	JUL	TOU	ORS	ANT	OXF	CAM	
Person months per participant:	2	2	2	2	3			
Participant number	7	8	9	10	11	12	13	
Short name of participant	LJU	GRA	ZAR	CAD	KRA	СНА	TRO	
Person months per participant:	4	4		3	2	3	2	
Participant number	14	15	16	17	18	19	20	
Short name of participant	CAT	ATTO	CEOS	DENS	NM	QD	EUR	
Person months per participant:	2	*	*	*	*	*		
Start month	1			End	48			

Objectives

This activity is dedicated to the education and training in advanced TEM techniques. Important objectives of the work will be:

- 1. Organising schools and workshops in order to transfer knowledge about TEM techniques to the scientific community with an emphasis on attracting scientists in the early stages of their careers
- 2. Organising webinars for specific and emerging TEM techniques
- 3. Providing webcasts related to TEM via the ESTEEM3 website to a broader scientific community

ESTEEM3 Schools and Workshops

School/workshop name	Date	Participants		
TEM and STEM Imaging				
EMAT workshop on transmission electron microscopy (ANT)	June 11 to 21, 2019	67		
Transmission electron microscopy of nanomaterials, European Summer Schoole TEM-UCA (CAD)	September 12 to 16, 2022	36		
European School on 4D STEM Imaging (AdSTEM3) (LJU)	May 14 to 18, 2023	61		
QEM 2022 (TOU+ORS)	May 8 to 20, 2022	154		
The 6 th Stanisław Gorczyca European school on electron microscopy and tomography (KRA)	July 12 to 15, 2022	45		
Sample preparation				
Workshop on Advanced TEM Specimen Preparation (STU)	October 24 to 28, 2022	15		

School/workshop name	Date	Participant s
Spectroscopy		
ESTEEM-spectroscopy school (GRA)	February 4 to 7, 2020	16
Conventional and counting EELS spectroscopy school (CAT)	July 22 to 25, 2019	27
Diffraction		
Workshop on electron diffraction for solving engineering problems (TRO)	June 21 to23	42 (+13 online)
In situ		
European workshop on advanced electron microscopy of ICT structures and quantum device materials structures (CHA)	May 8 to 9, 2023	58
Workshop on TEM Characterization Techniques: Focusing on In-situ and EELS (JUL)	March 22 to 24, 2023	30 (+162 online)

ESTEEM3 Additional Schools and Workshops

Title of the school/workshop	Partner	Dates	Participants
Workshop on Electrochemistry in Liquid TEM and on Orientation/Phase Mapping in Liquid	Amiens	May 27 to 29, 2019	23
Advanced Direct Detection EELS Workshop	Graz	September 25 to 26, 2019	12
European EELS & EFTEM School	Graz	February 7 to 10, 2023	11

- ✓ Low-loss EELS modelling and tomography (GRA)
- Preparations and considerations for in-situ microscopy of ICT structure (CHA)
- ✓ Open software for TEM image simulation (ANT)
- Computer-assisted electron crystallography (CAD)
- ✓ Industrial webinars by the SME partners (NanoMEGAS, DENSsolutions)
- In-situ techniques (LJU): Mid June2023

D2.2: Second report on training and education for the period M17 to M40 (M40 –GRA) D2.3: Third report on training and education for the period M40 to M52 (M52 – LJU)

WP3: Outreach

Work package number	3 Lead beneficiary				CAM, STU		
Work package title	Outreach	L					
Participant number	1	2	3а	3b	4	5	6
Short name of participant	STU	JUL	TOU	ORS	ANT	OXF	САМ
Person months per participant:	6	2	3	3	3	3	6
Participant number	7	8	9	10	11	12	13
Short name of participant	LJU	GRA	ZAR	CAD	KRA	СНА	TRO
Person months per participant:	3	3	3	3	3	3	5
Participant number	14	15	16	17	18	19	20
Short name of participant	САТ	ATTO	CEOS	DENS	NM	QD	EUR
Person months per participant:	3	1	1	1	1	1	12
Start month	1			End month	48		·

WP3: Outreach

Objective 1

 Promotion of ESTEEM3 activities and of TA offers in particular, including dissemination to industry and nonspecialist scientific communities and general public

Objective 2

• Increase in collaborations and service provision

Task 3.1: Dissemination and communication (MPG, EUR with participation of all other partners) Dissemination and communication plan

Task 3.2: Industrial engagement

(led by CAM and TRO with participation of all academic partners)

Task 3.1: Dissemination and communication

(MPG, EUR with participation of all other partners)

Academic and non- academic research community	 Communities interested in the ESTEEM3 project's developments, results and innovation. Scientific contributions of ESTEEM3 are particularly interesting for them.
Industrial sector	 Address and trigger the active involvement of companies in the TA scheme.
Government bodies,	Regional authorities
professional assoc., and	Professional associations
policy makers	Public administrations at regional and national level
EU technology clusters	Shared interests with European Materials Characterisation Council (EMCC)
EU projects working in	EUSMI provides an interdisciplinary infrastructure for soft matter research
similar domain	 <u>NFFA</u> sets out a platform to carry out comprehensive projects for multidisciplinary research at the nanoscale.
	 <u>Q-SORT</u> is a research project focusing on employing TEM as a so-called Quantum Sorter
TEM manufacturing companies	 TEM and component manufacturers are obvious stakeholders of the project.

Task 3.1: Dissem. and Comm.

Main achievements

> Updating different sections of the website with

- 58 Deliverables,
- Protocols and softwares (update ongoing)
- General news and events
- Schools, workshops, webinars (3 recorded webinars available online)
- 9 interviews,
- 13 TA success stories,
- 24 job positions etc.
- Key figures from project start : >22K visitors, >79K views
- Promotional videos :
 - stop motion video displayed on the homepage of the project (M8) : 864 views
 - Final video will be presented during the final event
- Creation of visual identity of the project (M3), comic strip

ESTEEM3 interviews : Raul Arenal from LMA Universidad de Zaragoza

ESTEEM3 interviews : Vesna Srot from Stuttg Center for Electron Microscopy

ESTEEM3 interviews : Dieter Weber from Forschungszentrum Jülich

ESTEEM3 inteviews : Susana Trasobares Llorente from University of Cádiz

Task 3.1: Dissem. and Comm.

- 7 editions so far: Sept 2019, April 2020, Oct 2020, June 2021, Nov 2021, June 2022, Dec 2022
- Last newsletter will be planned in June 2023
- 561 contacts (+2% since December 2022) (1/3 open it)
- Promotion on social media
 - 494 members on LinkedIn (+20% since December 2022)
 - 524.505 followers on Twitter (+4% since December 2022)
- Brochures (2) explaining the project with a focus on TA (M6, final brochure)
- Scientific publications

ESTEEM3 project @Esteem3Project ESTEEM3 is the European portal for industrial and academic researchers who need access to the latest generation of TEM instrumentation, methodology or tools. @ esteem3.ex [II] joined March 2019 103 Ecolomics

Task 3.1: Dissem. and Comm.

- Collaboration with other EU projects:
 - **EUSMI** European Soft Matter Infrastructure
 - Q-SORT The Quantum Sorter
 - **TEESMAT** The Open Innovation Test bed for Electrochemical Energy Storage MATerials

- Organisation of two TA user forums
- Workshops and conferences: Hosted or participated in professional events to share findings and engage with the wider scientific community.
- Public Engagement: Public lectures and engagement to share the importance and impact of the project's work with a wider audience.
- Online presence: A project website, social media, webinars, and online resources useful for reaching a global audience.

Communication

Actions	Metric	Status of KPI M53	Objective	Excellent	Good	Moderate	Weak	Comments
Brochure	Number	2	2	≥1	1	-	0	2nd Brochure planned for M52
	Prints	850	1200	≥ 1150	≥ 850	≥ 550	< 350	200 additional final brochures will be printed before the end of the project
Website	Visitors (monthly)	884	500	≥ 450	≥ 350	≥ 250	< 150	Excellent
	News posts	139	200	≥ 150	≥ 100	≥ 50	< 25	Publication pace has been accelerated by the increase of activities and results in the last months. The last 3 months of the project will generate additional news.
Newsletter	Subscribers (S)	560	500	≥ 450	≥ 350	≥ 250	< 150	Excellent
	Number	7	8	≥ 8	≥ 6	≥ 3	< 3	1edition is upcoming (June 2023)
	Openers (%)	43%	40%	≥ 40	≥ 30	≥ 20	< 10	It has been accelerated & achieved by the increase of activities and results in the last months
	0%							
Twitter	Followers	514	400	≥ 350	≥ 250	≥150	< 50	Excellent
LinkedIn	Members	451	400	≥ 350	≥ 250	≥150	< 51	Excellent
Videos	Number	1	2	≥1	1	-	0	1 final video upcoming at M52 will be presented for the final event
	Views	740	500	≥ 450	≥ 350	≥ 250	< 150	Excellent

Dissemination

520	500	≥ 450	≥ 350	≥ 250	< 150	Excellent
58	57	≥ 50	≥ 30	≥ 10	< 5	It will be accelerated & achieved by the submission of a wave of public deliverables in April 2023
15	10	≥ 10	≥ 6	≥ 3	< 3	Excellent
14	11	≥ 10	≥ 6	≥3	< 3	2 will be organised by the end of the project (2023)
8	5	≥ 5	≥ 4	≥1	< 1	Excellent
70	20	≥ 20	≥ 17	≥ 10	< 10	Excellent
4	5	≥ 5	≥ 4	≥1	<1	Good, the consortium will seek for collaborations for the final event.
5	5	≥ 5	≥ 4	≥1	< 1	. Publications in the EMS yearbook as well as EU research magazine.
2	2	>2	2	1	0	There are two press releases issued by the partners of the project. Instead of a press release, the consortium decided to create an additional video to present the project's results.
	520 58 58 15 14 8 70 4 5 5 70 2	520 500 58 57 15 10 14 11 8 5 70 20 4 5 5 5 2 2	520500 ≥ 450 5857 ≥ 50 1510 ≥ 10 1411 ≥ 10 85 ≥ 5 7020 ≥ 20 45 ≥ 5 55 ≥ 5 22 ≥ 20	520 500 ≥ 450 ≥ 350 58 57 ≥ 50 ≥ 30 15 10 ≥ 10 ≥ 6 14 11 ≥ 10 ≥ 6 8 5 ≥ 5 ≥ 4 70 20 ≥ 20 ≥ 17 4 5 ≥ 5 ≥ 4 7 5 ≥ 5 ≥ 4 7 20 ≥ 20 ≥ 17 2 A 5 ≥ 4 2 2 ≥ 4 ≥ 4 2 2 2 ≥ 4	520 500 ≥ 450 ≥ 350 ≥ 250 58 57 ≥ 50 ≥ 30 ≥ 10 15 10 ≥ 10 ≥ 6 ≥ 3 14 11 ≥ 10 ≥ 6 ≥ 3 8 5 ≥ 5 ≥ 4 ≥ 1 70 20 ≥ 20 ≥ 17 ≥ 10 4 5 ≥ 5 ≥ 4 ≥ 1 4 5 ≥ 5 ≥ 4 ≥ 1 4 5 ≥ 5 ≥ 4 ≥ 1 5 ≤ 2 ≥ 2 ≥ 4 ≥ 1 2 2 2 ≥ 2 ≥ 2 ≥ 1	1520500 ≥ 450 ≥ 350 ≥ 250 < 150 15857 ≥ 50 ≥ 30 ≥ 10 < 5 1510 ≥ 10 ≥ 6 ≥ 3 < 3 1411 ≥ 10 ≥ 6 ≥ 3 < 3 85 ≥ 5 ≥ 4 ≥ 1 < 1 7020 ≥ 20 ≥ 17 ≥ 10 < 10 45 ≥ 5 ≥ 4 ≥ 1 < 1 55 ≥ 4 ≥ 1 < 1 < 1 2221 0 < 1

Summary of Dissemination & Communication activities

Estimated number of persons reached	
Estimated number of persons reached for RP1	36859
Estimated number of persons reached for RP2	104986
Estimated number of persons reached for RP3	179121

Total reach	320966
-------------	--------

Task 3.2: Industrial engagement (led by CAM and TRO with participation of all academic partners)

Activities

- Discussions with other infrastructure projects (See WP 3.1).
 - TEESMAT (Open Innovation Test Bed (OITB) for Electrochemical Energy Storage Materials).
 - EUSMI (European Soft Matter Inrastructure).
- Webinar: Transnational Access within the Projects ESTEEM3, EUSMI and TEESMAT 9 December 2020.
- Online meeting 15 Jan 2021 presented ESTEEM3 to TEESMAT.
 - Potential service-provider, TEM not included in portfolio.

- Organised "Microscopy in Industrial Applications" session at EMC2020.
 - Cancelled due to Covid, considering EMC2024.
- "TNA for industry users" online discussion session arranged by DG Research & Innovation Research Infrastructures group, 2nd Dec 2022.
 - Input gathered from a range of consortia invited to discuss industrial TNA openly.
 - Feedback has been collated and shared with participants.
 - Session in ESTEEM3 Innovation Strategy Workshop, Jan 2023.

Deliverables

- D3.2: Initial list of industrial collaborations (M4 TRO)
- D3.3: Initial plan for establishing industrial awareness and uptake of TA (M6 CAM)
- D3.4: Report on engagement with industry (M20 CAM, update at M40)
- D3.4: Update of the report on engagement with industry (M46).

ESTEEM3 TRANSNATIONAL ACCESS ACHIEVEMENTS

THIS PROJECT HAS RECEIVED FUNDING FROM THE EUROPEAN UNION'S HORIZON 2020 RESEARCH AND INNOVATION PROGRAMME UNDER GRANT AGREEMENT NO **823717**

WP12: Transnational Access

Transnational Access procedure

* * * * * * *

- TNA applicants were able to :
 - Apply directly online via ESTEEM3 website (centralised system)
 - Apply at any time (no call for applications with deadline). Applications were open from 2019 to early 2023

TNA applicants needed to submit one administrative form + one proposal form (description of the work)

Transparent process : TNA User charter available online,

Document explaining the condition of access, the application process (including submission and review processes), the processes when the TNA project is accepted

Steps of the TNA application procedure

- 1. Processing the applications that come through the ESTEEM3's website.
- 2. Checking applications according to eligibility criteria.
- 3. Proposal is sent to two members of the evaluation committee (TAPEC) for review
- 4. The requested laboratory is contacted to ensure they can provide access and get confirmation their expertise is aligned with the project
- 5. Official notification to the project leader and all the participants
 - If accepted : formal notification (Approval letter)
 - If discarded, recommendations provided for improving the project and resubmission invitation
- 6. Project ongoing
- 7. At the project's end, a report form is sent to the project leader to assess the project and ESTEM3 process.

TNA selection procedure

Transnational Access Proposal Evaluation Committee members (TAPEC)

Composition

- The TAPEC is composed of 49 members, including 22 females and 27 males.
- Peer review process: renowned scientists in microscopy and materials science.

Rules

- The evaluating scientists are **not associated with the project** to ensure transparency.
- To avoid potential conflicts of interest and to ensure impartiality, the TAPEC members reviewing proposals will neither come from the country of the applicant nor of the TA provider.
- NDA signed with TAPEC members

Selection criteria

• Scientific quality of the proposal

(rank: weak: 0 – outstanding: 10)

 Demonstration of the need for the use of the advanced infrastructure

(rank: weak: 0 – outstanding: 5)

• Potential impact for academic or industrial innovation

(rank: weak: 0 – outstanding: 5)

Proposals with a total ranking less than 10 were rejected

During the implementation

- **Application** : Each project can request a maximum of **20** units (sample prep, TEM and DA included)
- Implementation : there is some flexibility

Compared to the requested TA, you can provide maximum the following additional units without notifying the coordinator/ Euronovia (without amendment)

- Prepare two more samples
- Provide three more days in total on TEM and/or data analysis
- If the changes are more significant, TNA project **Amendment** can be considered :
 - If the project does not exceed 25 units, we will redistribute the requested TA units
 - If the number of units to be provided is more than 25, a new project will have to be submitted

TNA promotion

Communication & Dissemination activities are focused on the TNA application and TNA project results :

The ESTEEM3 website is currently updated with the latest news on Transnational Access and all activities are detailed.

Weekly news are published on social networks, including any information related to the Transnational Access activities.

For example:

- **13 TA success stories** are already published on the website and shared on our social media.
- **10 articles** will be available end of June 2023!
- 2 TNA Users forum organised

Overview of the TNA Progress

Approx. **500** TNA projects accepted

MORE THAN 6000 UNITS OF ACCESS ACCEPTED AMONG WHICH

46% TEM

18% SAMPLE PREP.

36% DATA ANALYSIS

30/05/2023

ROUND TABLE: TNA FOR INDUSTRY IN THE CONTEXT OF EU GRANTS

THIS PROJECT HAS RECEIVED FUNDING FROM THE EUROPEAN UNION'S HORIZON 2020 RESEARCH AND INNOVATION PROGRAMME UNDER GRANT AGREEMENT NO **823717**

* * * * * * * * *

- Industry uptake in ESTEEM3
 - Level below ambitions.
- Direct discussion with other projects
 - TEESMAT (battery), EUSMI (soft materials) multi technique programmes.
- Policy officers EC RI programme meetings end of 2022
 - Industrial TNA uptake challenging for many projects and overall.
 - Range of requirements apparent, fast access, consultancy, insight, establishing networks.
 - Larger companies may prefer to pay to avoid publication requirement.
 - Transnational requirements vs local networks less attractive, particularly SMEs.
 - Notes have been distributed.

- Accommodate range of access levels?
 - Basic imaging to advanced techniques.
- Consulting role?
 - TNA to Technology Readiness Levels.
- Best way to make contact?
 - Build networks, open calls, events (conferences, webinars)....
- Invited to provide input to RI officers.
 - Framework for future TEM TNA provision?
 - Industry in future TEM initiatives?
 - eDREAM, ARIA?

Participation to TNA an industrial view

Dogan Ozkaya, Scientific Consultant EM, Johnson Matthey Technology Centre

Presentation available only during the online event

LUNCH BREAK

THIS PROJECT HAS RECEIVED FUNDING FROM THE EUROPEAN UNION'S HORIZON 2020 RESEARCH AND INNOVATION PROGRAMME UNDER GRANT AGREEMENT NO **823717**

TNA USER FORUM

THIS PROJECT HAS RECEIVED FUNDING FROM THE EUROPEAN UNION'S HORIZON 2020 RESEARCH AND INNOVATION PROGRAMME UNDER GRANT AGREEMENT NO **823717**

esteem3 TNA user feedback

Nano-gold on hierarchically structured gadolinium-doped ceria as an active oxidation catalyst: synergistic effect of chemical composition and structural hierarchy

Piotr Woźniak

Institute of Low Temperature and Structure Research

THIS PROJECT HAS RECEIVED FUNDING FROM THE EUROPEAN UNION'S HORIZON 2020 RESEARCH AND INNOVATION PROGRAMME UNDER GRANT AGREEMENT NO **823717**

Motivation

Motivation

Motivation

Motivation

Determination of structure-activity relationship HSMCO project goals

- 1. Description of the structural hierarchy of active catalytic supports and gold-decorated catalysts.
- Determination of the Gd³⁺ dopant distribution throughout the system.
- 3. Determination of the distribution and location of Au NPs.

EM techniques used

HREM, EDX, EELS, HAADF-STEM, ET-HAADF

HSMCO project

Hierarchically Structured Mixed Cerium Oxides

Structural hierarchy

Hierarchical structure: dopant influence

0 %

Hierarchical structure: dopant influence

<u>5 nn</u>

5 nm

5 nm

5 nm

0%

50 nm

5 nm

10 %

50 nm

5 nm

Hierarchical structure: dopant influence

70 %

50 nm

<u>5 nn</u>

Gd

50 nm

5 nm

0%

dopant

clustering

10 %

Hierarchical structure: dopant influence

Normalised intensity (a.u.)

200

400

600

800

Raman shift (cm⁻¹)

1000 1200 1400

70 %

Hierarchical structure: dopant influence

Hierarchical structure: dopant influence

Hierarchical structure: dopant influence

Rietveld refinement

Hierarchical structure: dopant influence

Evolution of the support architecture

31st May 2023

Hierarchical structure: dopant influence

Evolution of the support architecture

Stability of the architecture in soot combustion

31st May 2023

HSMCO project

Hierarchically Structured Mixed Cerium Oxides

Catalytic activity

Stability of the architecture in soot combustion

31st May 2023

A

HSMCO project

Hierarchically Structured Mixed Cerium Oxides

Active phase deposition

HSMCO project

Hierarchically Structured Mixed Cerium Oxides

Active phase deposition

Catalytic activity

31st May 2023

Synergistic effect of chemical composition and structural hierarchy

	TOF				
tom normalization	СО	chemiso	orption	Proposed ap	proach
					ļ
Table 2 Kinetic data for propane oxi	idation r ange: × 10 ²	Ε.	TOF₃₀იº::× 10² [a]	TOF300°C × 10 ² [b]	Reference
Table 2 Kinetic data for propane oxi Catalyst	idation r _{300°C} × 10 ² (mol _{co} g _{Au} -1 h ⁻¹)	E. (kJ/mol)	TOF _{300°C} × 10² [a] (S ⁻¹)	TOF _{300°C} ×10 ² [b] (s ⁻¹)	Reference
Table 2 Kinetic data for propane oxi Catalyst Au0.5/CeO2 HSNPs	idation r₃₀₀°c×10² (<u>molco</u> gau ¹ h¹) 1.07	Ea (kJ/mol) 63	TOF _{300°C} × 10 ² [a] (s ⁻¹) 2.18	TOF _{300°C} ×10² [b] (s ⁻¹)	Reference This work
Table 2 Kinetic data for propane oxi Catalyst Au0.5/CeO2 HSNPs Au2/CeO2 HSNPs Au2/CeO2 HSNPs	idation r _{300°C} × 10 ² (mol _{co} g _{Au} ⁻¹ h ⁻¹) 1.07 0.77	E, (kJ/mol) 63 49	TOF _{300°C} × 10 ² [a] (s ⁻¹) 2.18 0.43	TOF _{300°C} ×10² [b] (s ⁻¹) - 0.49	Reference This work This work
Table 2 Kinetic data for propane oxi Catalyst Au0.5/CeO2 HSNPs Au2/CeO2 HSNPs Au5/CeO2 HSNPs	idation F 300°C × 10² (mol _{co} g _{Au} -1 h-1) 1.07 0.77 0.61	E a (kJ/mol) 63 49 55	TOF _{300°C} × 10 ² [a] (s ⁻¹) 2.18 0.43 0.14	TOF _{300°C} ×10² [b] (s ⁻¹) - 0.49 0.43	Reference This work This work This work
Table 2 Kinetic data for propane oxi Catalyst Au0.5/CeO2 HSNPs Au2/CeO2 HSNPs Au5/CeO2 HSNPs Au5/CeO2 cubes Au5/CeO2 cubes	idation r _{300°C} × 10 ² (mol _{co} g _{Au} ⁻¹ h ⁻¹) 1.07 0.77 0.61 0.76	Ea (kJ/mol) 63 49 55 55 57	TOF _{300°C} × 10 ² [a] (s ⁻¹) 2.18 0.43 0.14 0.78	TOF _{300°C} × 10 ² [b] (s ⁻¹) - 0.49 0.43 0.26	Reference This work This work This work This work
Table 2 Kinetic data for propane oxi Catalyst Au0.5/CeO2 HSNPs Au2/CeO2 HSNPs Au2/CeO2 HSNPs Au5/CeO2 HSNPs Au5/CeO2 cubes Au5/CeO2 NPs Au5/CeO2 NPs	idation r _{300°C} × 10 ² (mol _{co} g _{Au} ⁻¹ h ⁻¹) 1.07 0.77 0.61 0.76 0.04	E. (kJ/mol) 63 49 55 57 65	TOF _{300°C} × 10 ² [a] (s ⁻¹) 2.18 0.43 0.14 0.78 0.01	TOF₃₀₀°℃×10² [b] (s ⁻¹) - 0.49 0.43 0,26 -	Reference This work This work This work This work This work
Catalyst Au0.5/CeO2 HSNPs Au2/CeO2 HSNPs Au5/CeO2 cubes Au5/CeO2 NPs Au5/CeO2 NPs Au5/CeO2 NPs Au5/CeO2 NPs	idation r _{300°C} × 10 ² (mol _{CO} g _{Au} ⁻¹ h ⁻¹) 1.07 0.77 0.61 0.76 0.04 1.13	E (kJ/mol) 63 49 55 57 65 52	TOF₃00°C×10² [a] (s⁻1) 2.18 0.43 0.14 0.78 0.01 2.14	TOF _{300°C} ×10 ² [b] (s ⁻¹) - 0.49 0.43 0,26 - -	Reference This work This work This work This work This work This work
Catalyst Au0.5/CeO2 HSNPs Au2/CeO2 HSNPs Au5/CeO2 HSNPs Au5/CeO2 cubes Au5/CeO2 NPs Au5/CeO2 NPs Au5/CeO2 NPs Au0.5/GDC-10% HSNPs	idation r _{300°C} × 10 ² (mol _{co} g _{Au} ⁻¹ h ⁻¹) 1.07 0.77 0.61 0.76 0.04 1.13 1.85	Ea (kJ/mol) 63 49 55 57 65 52 49	TOF _{300°C} × 10 ² [a] (s ⁻¹) 2.18 0.43 0.14 0.78 0.01 2.14 1.05	TOF _{300°C} × 10 ² [b] (s ⁻¹) - 0.49 0.43 0,26 - - 1.18	Reference This work This work This work This work This work This work
Table 2 Kinetic data for propane oxi Catalyst Au0.5/CeO2 HSNPs Au2/CeO2 HSNPs Au2/CeO2 HSNPs Au5/CeO2 HSNPs Au5/CeO2 Cubes Au5/CeO2 NPs Au5/CeO2 NPs Au0.5/GDC-10% HSNPs Au2/GDC-10% HSNPs Au2/GDC-10% HSNPs Au5/GDC-10% HSNPs	idation r _{300°C} × 10 ² (mol _{co} g _{Au} ⁻¹ h ⁻¹) 1.07 0.77 0.61 0.76 0.04 1.13 1.85 0.72	E. (kJ/mol) 63 49 55 57 65 52 49 51	TOF _{300°C} × 10 ² [a] (s ⁻¹) 2.18 0.43 0.14 0.78 0.01 2.14 1.05 0.17	TOF _{300°C} × 10 ² [b] (s ⁻¹) - 0.49 0.43 0.26 - - 1.18 1.11	Reference This work This work This work This work This work This work This work
Table 2 Kinetic data for propane oxi Catalyst Au0.5/CeO2 HSNPs Au2/CeO2 HSNPs Au2/CeO2 HSNPs Au5/CeO2 HSNPs Au5/CeO2 cubes Au5/CeO2 NPs Au5/CeO2 NPs Au0.5/GDC-10% HSNPs Au2/GDC-10% HSNPs Au5/GDC-10% HSNPs Au5/GDC-10% Cubes	idation r _{300°C} × 10 ² (mol _{C0} g _{Au} ⁻¹ h ⁻¹) 1.07 0.77 0.61 0.76 0.04 1.13 1.85 0.72 0.96	Ex. (kJ/mol) 63 49 55 57 65 52 49 51 47	TOF₃00°C×10² [a] (s⁻1) 2.18 0.43 0.14 0.78 0.01 2.14 1.05 0.17 1.04	TOF _{300°C} ×10 ² [b] (s ⁻¹) - 0.49 0.43 0.26 - - 1.18 1.11 0,61	Reference This work This work This work This work This work This work This work This work

Conclusions

- Hydrothermal synthesis + thermolysis + deposition-precipitation -> catalyst with structural hierarchy and superior activity
- 2. Gd³⁺ increases activity and stability of the architecture of catalyst
- 3. Gd³⁺ influences the temperature-dependent evolution of the architecture
- 4. Synergistic effect of structural hierarchy and doping in propane oxidation

Thank you for your attention!

Literature

Woźniak, P., Małecka, M.A., Chinchilla, L., Trasobares, S., 3D hierarchically structured $Ce_{1-x}Gd_xO_{2-x/2}$ mixed oxide particles: the role of microstructure, porosity and multi-level architecture stability in soot and propane oxidation, Mater. Res. Bull., 2022, 151, 111816.

Woźniak, P., Małecka, M.A., Kraszkiewicz, P., Miśta, W., Bezkrovnyi, O., Chinchilla, L., Trasobares, S., Confinement of nano-gold in 3D hierarchically structured gadolinium- doped ceria mesocrystal: synergistic effect of chemical composition and structural hierarchy in CO and propane oxidation. Catal. Sci. Technol., 2022, 12, 7082-7113.

Woźniak P., Miśta W., Małecka M.A., Function of various levels of hierarchical organization of porous $Ce_{0.9}REE_{0.1}O_{1.95}$ mixed oxides in catalytic activity, CrystEngComm, 2020, 22, 5914-5930.

ESTEEM 3 TNA user feedback Advanced microscopy characterization of innovative ceramic coatings for hydrogen technologies

Elisa Zanchi Politecnico di Torino, Italy

THIS PROJECT HAS RECEIVED FUNDING FROM THE EUROPEAN UNION'S HORIZON 2020 RESEARCH AND INNOVATION PROGRAMME UNDER GRANT AGREEMENT NO **823717**

- Network and collaborations around **ESTEEM3 project**
- The **CeramECS** project: "Glass-ceramic and ceramic materials for energy conversion and storage"
- Motivation: Solid Oxide Cell technologies for hydrogen energy
 - Ceramic protective **coatings**
 - Electrophoretic deposition (EPD)
 - Advanced **TEM** characterization
- Further activities: the **GlaMater** project
- Concluding remarks

Department of Applied science and Technology, Institute of Physics, GLANCE Group, Turin, Italy International Centre of Electron Microscopy for Materials Science at the AGH-UST, Krakow, Poland

Solid oxide cells (SOCs) are electrochemical energy conversion devices operating at temperatures in the range of 600–850 °C

SOEC: Electrical energy \rightarrow Chemical energy (H_2) **SOFC:** Chemical energy (H_2) \rightarrow Electrical energy **rSOC:** integration in renewable energy systems

Why SOCs?
 ✓ Efficient energy conversion technology
 ✓ Clean: Low GHGs emissions
 ✓ Reduction of CO₂ fingerprint

30 cells stack, Sunfire GmbH

31st May 2023

SOC stack

Ferritic stainless-steels are widely used as interconnects SOC stacks

- Electrical connection
- Separation between oxidizing/reducing atmosphere

Grant # 874577 - NewSOC

HT corrosion

Applying a **protective coating** on the steel is a promising approach to extend the interconnect life and avoid cathode poisoning

The coating must:

- Reduce the oxidation rate of the steel
- Reduce Cr-evaporation
- Ensure high electrical conductivity
- Compatible thermal expansion coefficient (11-13 10⁻⁶ κ⁻¹)

E. Zanchi et al., *J. Power Sources.* 455 (2020) 227910.

The **Mn-Co spinel family** (MCO) has been shown to be particularly promising

The functional properties can be improved by

✓ Modifications with additional elements – doping

Optimized deposition and sintering

Electrophoretic deposition

Electrophoresis : motion of charged particles in a suspension under the influence of an electric field

Deposition: coagulation of particles to a dense mass

Hamaker's equation: $m = C_s \mu SEt$

m= mass deposited at time t on surface S Cs = concentration in the suspension μ = electrophoretic mobility E = electric field applied

E = electric field applied

$$\mu = \frac{\varepsilon \zeta}{4\pi \eta} = \frac{\nu}{E}$$

- ε = dielectric constant of the liquid.
- η = viscosity of the liquid.
- ζ = Zeta potential.
- v = particle velocity.

E. Zanchi, et al., Mater. Lett. 286 (2021) 129229

Experimental challenges:

- Stability of the suspension
- Deposition parameters
- Sintering process

Compared to other techniques, EPD

- Has a simple and adaptable set-up
- Is a fast and versatile technique
- Reduces processing time and cost

EPD set-up @ POLITO

1) **Upscale** of the electrophoretic deposition set-up

2) Modification of the spinel by electrophoretic co-deposition

CeramECS

Glass-ceramic and ceramic materials for energy conversion and storage

EPD apparatus upscale

...to validate EPD for real dimension devices

EPD adapted to a 3-electrode set-up

~20x20 cm surface successfully deposited

SOC Stack test: 850 °C, 3000 h

The EPD deposited Mn–Co spinel coating showed improved stability

31st May 2023

ESTEEM3 – Final event – Paris, FR

Elisa Zanchi, Politecnico di Torino 196

Advanced TEM post-mortem characterization

Fib lamella: to investigate reactions at the **steel-coating interface** and developed **phases**

Oxide Crofer22APU Scale Coating

Overview of the FIB lamella

Magnification of **oxide scale-coating** interface

31st May 2023

ESTEEM3 – Final event – Paris, FR

Elisa Zanchi, Politecnico di Torino 197

*** * * * *

Overview of the FIB lamella from coated interconnect

Coating

Scale

EDS map of the lamella:

Different Mn and Co distribution in the coating Cr confined in the oxide scale and absence of "reaction layer" Mn-rich sub scale oxidation

Advanced TEM characterisation of oxide scale-coating interface

Oxide scale Coating

EDS compositionOCrMnFe59.230.410.00.2

Simulated SAED of Cr₂MnO₄, superimposed on experimental one

Experimental HAADF – STEM and Simulated HAADF STEM

Remarkable diffusion of Mn leading to **Cr-Mn spinel formation** Increased the electric conductivity and lower Cr evaporation compared to pure chromia scale

Advanced TEM characterisation of oxide scale-coating interface

Dual phase structure of the Mn-Co spinel coating Cobalt-rich grains: MnCo₂O₄ cubic structure Mn-rich elongated grains: Mn₂CoO₄ tetragonal structure

Simulated SAED of Mn₂CoO₄ superimposed on exp. one [ZA 301]

31st May 2023

CeramECS

Glass-ceramic and ceramic materials for energy conversion and storage

Fe-Cu co-doping of the Mn-Co spinel coating

...to improve the functional properties of the Mn-Co spinel by addition of transition metals

Electrophoretic co-deposition of 3 precursors: cathodic deposition

- Water-ethanol suspension
- Deposited on Crofer22APU
- Optimised deposition at 50 V for 30 s
- Four different spinel compositions

	Journal of the European Ceramic Society 42 (2022) 3271–3281					
	Contents lists available at ScienceDirect					
	Journ	Journal of the European Ceramic Society				
	ELSEVIER journ	ER journal homepage: www.elsevier.com/locate/jeurceramsoc				
	Electrophoretic co-deposition of $Mn_{1.5}Co_{1.5}O_4$, Fe_2O_3 and CuO: Unravelling the effect of simultaneous addition of Cu and Fe on the microstructural, thermo-mechanical and corrosion properties of in-situ modified spinel coatings for solid oxide cell interconnects					
	E. Zanchi", J. Ignaczak", S. Molin", G. Cempura", A.R. Boccaccini", F. Smeacetto" POLITECHNIKA GDANSKA A G H					
Cu						
		Two-step				
u		Reactive sintering:				
		Reduction				
·		Re-oxidation				
u						
······						
		Successful in-situ				
		doping: Stabilization of				
· · ·		the cubic spinel				
	$\overline{\mathbf{N}}$					
ا بر میرود با میراند. ا	MU	structure				
25 3	0 35 40 45 50 55 60 65 70					
	2 Ineta (deg)					

31st May 2023

ESTEEM3 – Final event – Paris, FR

10Fe10

10Fe5C

5Fe10C

5Fe5Cu

MCO

10 15 20

Doped spinel coatings

*** * * ***

Characterization of Mn-Co spinel coatings with Fe-Cu addition

Doped spinel coatings

* * * * * * *

Advanced TEM characterization of doped coatings

ESTEEM3 – Final event – Paris, FR

Elisa Zanchi, Politecnico di Torino 203

Doped spinel coatings

Advanced TEM characterization of doped coatings

EDS

5Fe5Cu sample: lowest amount of dopants

500 nm

Homogeneous distribution of Fe and Cu in the Mn-Co spinel **Fe+Cu addition:** synergic effect in suppressing the double-phase spinel formation

View of the lamella from the outer coating side

31st May 2023

ESTEEM3 – Final event – Paris, FR

Elisa Zanchi, Politecnico di Torino 204

200 nm

EDS

 $\overline{\mathbf{0}}$

Cu

Co

Fe

Mn

Cr

At.%

46.6

4.1 22.3

3.1

22.5

0.4

Fuel Inlet

Further activities in ESTEEM3

GlaMater

"Advanced glass and ceramic materials for energy applications"

Gas tightness

Fuel Outlet

II) Design of innovative interface concepts

.. To minimize reactions between steel and the sealant Improve thermo-mechanical properties of the joint

TEM lamella of alumina coating @1000 °C

31st May 2023

ESTEEM3 – Final event – Paris, FR

Elisa Zanchi, Politecnico di Torino 205

Concluding remarks

The **Transnational Access** provided by **ESTEEM3 Project** enabled:

- The consolidation of fruitful networking
- Strengthening of AGH-POLITO collaboration
- Publications on high-impact journals
- Training on TEM characterization techniques
- Professional (and personal!) experience for PhD activity

Krakow, 2019

Krakow, 2023

Results and publications on the **CeramECS** projects provided:

- A first in-depth characterization of Mn-Co dual spinel structure and oxide scale evolution after stack test at relevant conditions
- ✓ A first comprehensive assessment of synergic effect of Fe-Cu addition into the Mn–Co spinel structure
- Better understanding of coating degradation phenomena
 ...to improve the performance and durability of SOC devices
 and boost hydrogen technologies

This project has received funding from the **Fuel Cells and Hydrogen 2 Joint Undertaking** (now Clean Hydrogen Partnership) under Grant Agreement No 874577-NewSOC. This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation program, Hydrogen Europe and Hydrogen Europe Research.

Dr. S.M. Collins –

Lumi University of Leeds

THIS PROJECT HAS RECEIVED FUNDING FROM THE EUROPEAN UNION'S HORIZON 2020 RESEARCH AND INNOVATION PROGRAMME UNDER GRANT AGREEMENT NO **823717**

Lead halide perovskites (LHPs)

E.M. Tennyson, T.A.S. Doherty, S.D. Stranks *Nat. Rev. Mater.* **2019**, *4*, 573-587.

K. Lin et al. Nature 2018, 562, 245-248.

X. Zhu et al. Nat. Commun. 2019, 10, 2843.

Challenges in LHPs

Temperature-dependent crystal structures

Degradation under exposure to light, heat, & water

Phase separation/segregation (mixed ion designs)

Trap states from defects

MOF glasses: A 4th category

MOFs: Metal-organic frameworks

Pores highlighted in amber

ZIF-4

Heat treatment -> Melt-quenched glass

Qiao et al. Sci. Adv. **2018**, *4*, eaao6827. Gaillac et al. Nat. Mater. **2017**, *1*6, 1149-1154.

C.W. Ashling et al. J. Am. Chem. Soc. 2019, 141, 15641-15648.
S. Li et al. Chem. Sci. 2020, 11, 9910-9918.

31st May 2023

Phase transitions in CsPbl₃

J. Hou et al. Science, 2021, 374, 621-625.

$CsPbX_3$ nanocrystals in $a_qZIF-62$

CsPbl₃

Composite formation favours bright Iuminescence across CsPbX₃ compositions

J. Hou et al. Science, 2021, 374, 621-625.

LEMAS

ADF tomography

Nanobeam diffraction

'Pencil' beam: (1) Nanobeam point diffraction from individual grains(2) Increased depth of focus for tomography of micron-wide glass shard

J. Hou et al. Science, 2021, 374, 621-625.

Liquid-phase sintering

J. Hou et al. Science, **2021**, 374, 621-625.

31st May 2023

Liquid-phase sintering

R.M. German, P. Suri, S. J. Park *J. Mater. Sci.* **2009**, *44*, 1-39.

J. Hou et al. Science, **2021**, 374, 621-625.

CL from perovskite nanocrystals

Narrow-band emission arises from embedded nanocrystals

Characteristic emission for γ-CsPbl₃

J. Hou et al. Science, 2021, 374, 621-625.

Durable narrow-band emission

J. Hou et al. Science, 2021, 374, 621-625.

Correlative CL-SED, CL-EDS

Cross-sections: Separate grains in projection

Scale bar: 250 nm

Sample fabrication FIB milling

CL spectrum image data

SED from identical regions

EDS from identical regions

Correlative CL-diffraction

(CsPbBr₃)(a_gZIF-62)

70 nm

Dr Sang Pham

Bright, single peak for CsPbBr₃

SED: phase identification and orientation

Correlative CL-EDS

Acknowledgements

Materials

Tom Bennett (U. Cambridge)

Xuemei Li, Jingwei Hou (U. Queensland, Australia)

Electron microscopy and data processing

Rana Doasa, Mark S'Ari, Sang Pham (*U. Leeds*) Duncan Johnstone (*U. Cambridge*)

Luiz Tizei (LPS, U. Paris-Saclay, CNRS, France)

Bragg Centre for Materials Research School of Chemical and Process Engineering & School of Chemistry

MIH

TNA user feedback

Tooth gnamel pathologies of gnvironmental origin from macro- to nano-scale

Presentation available only during the online event

THIS PROJECT HAS RECEIVED FUNDING FROM THE EUROPEAN UNION'S HORIZON 2020 RESEARCH AND INNOVATION PROGRAMME UNDER GRANT AGREEMENT NO **823717**

COFFEE BREAK

THIS PROJECT HAS RECEIVED FUNDING FROM THE EUROPEAN UNION'S HORIZON 2020 RESEARCH AND INNOVATION PROGRAMME UNDER GRANT AGREEMENT NO **823717**

esteem 3 TNA user feedback

Electron microscopy characterization of graphitemicroparticle interface in spheroidal graphite iron alloys

Presentation available only during the online event

PhD., Leander Michels Elkem Silicon Products ISGI project - collaboration with UCAM

THIS PROJECT HAS RECEIVED FUNDING FROM THE EUROPEAN UNION'S HORIZON 2020 RESEARCH AND INNOVATION PROGRAMME UNDER GRANT AGREEMENT NO **823717**

ROUTES OF SUSTAINABILITY: EDREAM AND ARIE

THIS PROJECT HAS RECEIVED FUNDING FROM THE EUROPEAN UNION'S HORIZON 2020 RESEARCH AND INNOVATION PROGRAMME UNDER GRANT AGREEMENT NO **823717**

 First steps towards sustainability: Creation of a "European Distributed Research infrastructure for Advanced electron Microscopy" (e⁻ DREAM) as a nonprofit initiative (https://e-dream-eu.org/).

 e-DREAM is a member of the Analytical Research Infrastructures in Europe (https://arie-eu.org/).

Support for the European EM community:

- Long-term strategic initiatives
- Funding for access and joint research
- Contact point to policy makers and politicians
- Contact point to EM organisations on other continents
- Community-driven actions to support researchers
- Synergy with other communities to take advantage of complementary expertise
- Sustainable situation beyond current Grand Challenges

e⁻ DREAM: Members

- Forschungszentrum Jülich CEMES-CNRS LPS-CNRS
- NTNU (Trondheim)
- Universiteit Antwerpen
- University of Oxford
- **CNR-IOM**
- Graz Univ. of Technology ICN2 (Barcelona)

Rafal Dunin-Borkowski Etienne Snoeck Mathieu Kociak Randi Holmestad Johan Verbeeck **Angus Kirkland Regina Ciancio** Gerald Kothleitner Jordi Arbiol

Open to further members soon

1. European strategy

- This working group will address short-term and long-term perspectives and sustainability of electron microscopy in the European landscape of Research Infrastructures.
- It will define schemes to maximize the impact of electron microscopy.
- It will develop a user service evolution strategy at international, national and local levels.

2. Data policy

- This working group will address data management, storage, access and file formats, with a focus on open science.
- It will compile information about existing solutions, work on data policy and approaches for best practice and contribute to developments for the benefit of the community.

3. Software

- This working group will address software for data acquisition, analysis, simulation, instrument control and remote access.
- It will compile information about existing solutions and contribute to developments for the benefit of the community.

4. Hardware

- This working group will address hardware standardisation of instruments to improve interoperability of multi-vendor and self-made equipment to enable an open ecosystem that fosters innovation.
- It will compile information about existing and emerging technologies and collaborate with related fields to decrease the gap between what is technically possible and what is available for electron microscopy.

Horizon Europe proposals together with ARIE:

- European Green Deal
- Circular economy
- Cancer
- Remote access
- Digital twins
- Transition towards a SusTainable Environment
- Nanoscience & Nanotechnology

Horizon Europe projects

- HORIZON-INFRA-2021-SERV-01-04 "Recyclable materials development at analytical research infrastructures" (ReMade@ARI) co-ordinated by HZDR (2023-2027).
- Provide scientists with analytical tools to study recyclable materials.

- HORIZON-INFRA-2022-TECH-01-01 "Interoperable electron Microscopy Platform for Advanced RESearch and Services" (IMPRESS) co-ordinated by CNR (2023-2027).
- Instrumentation development for transfer of experiments between characterization tools at TRL 8 based on open standards through pre-commercial procurement.

Formation of legal entity (AISBL)

- First draft of statues prepared
- Law firm commissioned

Discussions with policy makers and ministers about support for the formation of a sustainable distributed research infrastructure:

- ESFRI
- ERIC

CONCLUSION

THIS PROJECT HAS RECEIVED FUNDING FROM THE EUROPEAN UNION'S HORIZON 2020 RESEARCH AND INNOVATION PROGRAMME UNDER GRANT AGREEMENT NO **823717**

Enabling Science and Technology through European Electron Microscopy

Thank you for your attention!

https://www.esteem3.eu/